diff --git a/src/UnitTests/Matrices/SymmetricSparseMatrixTest.h b/src/UnitTests/Matrices/SymmetricSparseMatrixTest.h new file mode 100644 index 0000000000000000000000000000000000000000..fd6bd84641b05059426bfa7ff1691e22749bf780 --- /dev/null +++ b/src/UnitTests/Matrices/SymmetricSparseMatrixTest.h @@ -0,0 +1,1304 @@ +/*************************************************************************** + SymmetricSparseMatrixTest.h - description + ------------------- + begin : Feb 7, 2020 + copyright : (C) 2020 by Tomas Oberhuber et al. + email : tomas.oberhuber@fjfi.cvut.cz + ***************************************************************************/ + +/* See Copyright Notice in tnl/Copyright */ + +#include <TNL/Containers/Vector.h> +#include <TNL/Containers/VectorView.h> +#include <TNL/Math.h> +#include <TNL/Algorithms/ParallelFor.h> +#include <iostream> +#include <sstream> + +#ifdef HAVE_GTEST +#include <gtest/gtest.h> + +template< typename MatrixHostFloat, typename MatrixHostInt > +void host_test_GetType() +{ + bool testRan = false; + EXPECT_TRUE( testRan ); + std::cout << "\nTEST DID NOT RUN. NOT WORKING.\n\n"; + std::cerr << "This test has not been implemented properly yet.\n" << std::endl; +} + +template< typename MatrixCudaFloat, typename MatrixCudaInt > +void cuda_test_GetType() +{ + bool testRan = false; + EXPECT_TRUE( testRan ); + std::cout << "\nTEST DID NOT RUN. NOT WORKING.\n\n"; + std::cerr << "This test has not been implemented properly yet.\n" << std::endl; +} + +template< typename Matrix > +void test_SetDimensions() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + const IndexType rows = 9; + const IndexType cols = 8; + + Matrix m; + m.setDimensions( rows, cols ); + + EXPECT_EQ( m.getRows(), 9 ); + EXPECT_EQ( m.getColumns(), 8 ); +} + +template< typename Matrix > +void test_SetCompressedRowLengths() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + / 1 2 4 7 \ + | 2 3 5 8 10 13 16 19 | + | 4 5 6 11 14 21 24 27 | + | 7 8 9 17 20 | + | 10 11 12 22 25 | + | 13 14 15 28 | + | 16 17 18 | + | 19 20 21 | + | 21 22 23 | + | 24 25 26 | + \ 27 28 30 / + */ + const IndexType rows = 10; + const IndexType cols = 11; + + Matrix m( rows, cols ); + typename Matrix::CompressedRowLengthsVector rowLengths { 1, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; + m.setCompressedRowLengths( rowLengths ); + + // Insert values into the rows. + RealType value = 1; + + // 0th row - lower part + m.setElement( 0, 0, value++ ); + + // 1st row - lower part + m.setElement( 1, 0, value++ ); + m.setElement( 1, 1, value++ ); + + // 2nd row - lower part + m.setElement( 2, 0, value++ ); + m.setElement( 2, 1, value++ ); + m.setElement( 2, 2, value++ ); + + // 3rd row - lower part + m.setElement( 3, 0, value++ ); + m.setElement( 3, 1, value++ ); + m.setElement( 3, 3, value++ ); + + // 4th row - lower part + m.setElement( 4, 1, value++ ); + m.setElement( 4, 2, value++ ); + m.setElement( 4, 4, value++ ); + + // 5th row - lower part + m.setElement( 5, 1, value++ ); + m.setElement( 5, 2, value++ ); + m.setElement( 5, 5, value++ ); + + // 6th row - lower part + m.setElement( 6, 1, value++ ); + m.setElement( 6, 3, value++ ); + m.setElement( 6, 6, value++ ); + + // 7th row - lower part + m.setElement( 7, 1, value++ ); + m.setElement( 7, 3, value++ ); + m.setElement( 7, 7, value++ ); + + rowLengths = 0; + m.getCompressedRowLengths( rowLengths ); + typename Matrix::CompressedRowLengthsVector correctRowLengths{ 1, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; + EXPECT_EQ( rowLengths, correctRowLengths ); +} + +template< typename Matrix1, typename Matrix2 > +void test_SetLike() +{ + using RealType = typename Matrix1::RealType; + using DeviceType = typename Matrix1::DeviceType; + using IndexType = typename Matrix1::IndexType; + + const IndexType rows = 8; + const IndexType cols = 7; + + Matrix1 m1( rows + 1, cols + 2 ); + Matrix2 m2( rows, cols ); + + m1.setLike( m2 ); + + EXPECT_EQ( m1.getRows(), m2.getRows() ); + EXPECT_EQ( m1.getColumns(), m2.getColumns() ); +} + +template< typename Matrix > +void test_GetNumberOfNonzeroMatrixElements() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 10x10 sparse matrix: + * + / 1 2 4 7 \ -> 4 + | 2 3 5 8 10 13 16 19 | -> 8 + | 4 5 6 11 14 21 25 28 | -> 8 + | 7 8 9 17 20 | -> 5 + | 10 11 12 23 26 | -> 5 + | 13 14 15 29 | -> 4 + | 16 17 18 | -> 3 + | 19 20 21 | -> 3 + | 22 23 24 | -> 3 + | 25 26 27 | -> 3 + \ 28 29 30 / -> 3 + ---- + 49 + */ + + const IndexType rows = 10; + const IndexType cols = 10; + + Matrix m( rows, cols, { + { 0, 0, 1 }, + { 1, 0, 2 }, { 1, 1, 3 }, + { 2, 0, 4 }, { 2, 1, 5 }, { 2, 2, 6 }, + { 3, 0, 7 }, { 3, 1, 8 }, , { 3, 3, 9 }, + { 4, 1, 10 }, { 4, 2, 11 }, { 4, 4, 12 }, + { 5, 1, 13 }, { 5, 2, 14 }, { 5, 5, 15 }, + { 6, 1, 16 }, { 6, 3, 17 }, { 6, 6, 18 }, + { 7, 1, 19 }, { 7, 3, 20 }, { 7, 7, 21 }, + { 8, 2, 22 }, { 8, 4, 23 }, { 8, 8, 24 }, + { 9, 2, 25 }, { 9, 4, 26 }, { 9, 9, 27 } + { 10, 2, 28 }, { 10, 4, 29 }, { 10, 10, 30 } + } ); + + EXPECT_EQ( m.getNumberOfNonzeroMatrixElements(), 49 ); +} + +template< typename Matrix > +void test_Reset() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 5x4 sparse matrix: + * + * / 0 0 0 0 \ + * | 0 0 0 0 | + * | 0 0 0 0 | + * | 0 0 0 0 | + * \ 0 0 0 0 / + */ + + const IndexType rows = 5; + const IndexType cols = 4; + + Matrix m( rows, cols ); + m.reset(); + + EXPECT_EQ( m.getRows(), 0 ); + EXPECT_EQ( m.getColumns(), 0 ); +} + +template< typename Matrix > +void test_GetRow() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + /* + * Sets up the following 11x11 sparse matrix: + * + / 1 2 4 7 \ + | 2 3 5 8 10 13 16 19 | + | 4 5 6 11 14 22 25 28 | + | 7 8 9 17 20 | + | 10 11 12 23 26 | + | 13 14 15 29 | + | 16 17 18 | + | 19 20 21 | + | 22 23 24 | + | 25 26 27 | + \ 28 29 30 / + */ + + Matrix m( { 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, 11 ); + + auto matrixView = m.getView(); + auto f = [=] __cuda_callable__ ( const IndexType rowIdx ) mutable { + auto row = matrixView.getRow( rowIdx ); + RealType val; + switch( rowIdx ) + { + case 0: row.setElement( 0, 0, 1 ); break; + case 1: row.setElement( 0, 0, 2 ); row.setElement( 1, 1, 3 ); break; + case 2: row.setElement( 0, 0, 4 ); row.setElement( 1, 1, 5 ); row.setElement( 2, 2, 6 ); break; + case 3: row.setElement( 0, 0, 7 ); row.setElement( 1, 1, 8 ); row.setElement( 2, 3, 9 ); break; + case 4: row.setElement( 0, 1, 10 ); row.setElement( 1, 2, 11 ); row.setElement( 2, 4, 12 ); break; + case 5: row.setElement( 0, 1, 13 ); row.setElement( 1, 2, 14 ); row.setElement( 2, 5, 15 ); break; + case 6: row.setElement( 0, 1, 16 ); row.setElement( 1, 3, 17 ); row.setElement( 2, 6, 18 ); break; + case 7: row.setElement( 0, 1, 19 ); row.setElement( 1, 3, 20 ); row.setElement( 2, 7, 21 ); break; + case 8: row.setElement( 0, 2, 22 ); row.setElement( 1, 4, 23 ); row.setElement( 2, 8, 24 ); break; + case 9: row.setElement( 0, 2, 25 ); row.setElement( 1, 4, 26 ); row.setElement( 2, 9, 27 ); break; + case 10: row.setElement( 0, 2, 28 ); row.setElement( 1, 5, 29 ); row.setElement( 2, 10, 30 ); break; + } + }; + TNL::Algorithms::ParallelFor< DeviceType >::exec( ( IndexType ) 0, rows, f ); + + EXPECT_EQ( m.getElement( 0, 0 ), 1 ); + EXPECT_EQ( m.getElement( 0, 1 ), 2 ); + EXPECT_EQ( m.getElement( 0, 2 ), 4 ); + EXPECT_EQ( m.getElement( 0, 3 ), 7 ); + EXPECT_EQ( m.getElement( 0, 4 ), 0 ); + EXPECT_EQ( m.getElement( 0, 5 ), 0 ); + EXPECT_EQ( m.getElement( 0, 6 ), 0 ); + EXPECT_EQ( m.getElement( 0, 7 ), 0 ); + EXPECT_EQ( m.getElement( 0, 8 ), 0 ); + EXPECT_EQ( m.getElement( 0, 9 ), 0 ); + EXPECT_EQ( m.getElement( 0, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 1, 0 ), 2 ); + EXPECT_EQ( m.getElement( 1, 1 ), 3 ); + EXPECT_EQ( m.getElement( 1, 2 ), 4 ); + EXPECT_EQ( m.getElement( 1, 3 ), 8 ); + EXPECT_EQ( m.getElement( 1, 4 ), 10 ); + EXPECT_EQ( m.getElement( 1, 5 ), 13 ); + EXPECT_EQ( m.getElement( 1, 6 ), 16 ); + EXPECT_EQ( m.getElement( 1, 7 ), 19 ); + EXPECT_EQ( m.getElement( 1, 8 ), 0 ); + EXPECT_EQ( m.getElement( 1, 9 ), 0 ); + EXPECT_EQ( m.getElement( 1, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 2, 0 ), 4 ); + EXPECT_EQ( m.getElement( 2, 1 ), 5 ); + EXPECT_EQ( m.getElement( 2, 2 ), 6 ); + EXPECT_EQ( m.getElement( 2, 3 ), 0 ); + EXPECT_EQ( m.getElement( 2, 4 ), 11 ); + EXPECT_EQ( m.getElement( 2, 5 ), 14 ); + EXPECT_EQ( m.getElement( 2, 6 ), 0 ); + EXPECT_EQ( m.getElement( 2, 7 ), 0 ); + EXPECT_EQ( m.getElement( 2, 8 ), 22 ); + EXPECT_EQ( m.getElement( 2, 9 ), 25 ); + EXPECT_EQ( m.getElement( 2, 10 ), 28 ); + + EXPECT_EQ( m.getElement( 3, 0 ), 7 ); + EXPECT_EQ( m.getElement( 3, 1 ), 8 ); + EXPECT_EQ( m.getElement( 3, 2 ), 0 ); + EXPECT_EQ( m.getElement( 3, 3 ), 9 ); + EXPECT_EQ( m.getElement( 3, 4 ), 0 ); + EXPECT_EQ( m.getElement( 3, 5 ), 0 ); + EXPECT_EQ( m.getElement( 3, 6 ), 17 ); + EXPECT_EQ( m.getElement( 3, 7 ), 20 ); + EXPECT_EQ( m.getElement( 3, 8 ), 0 ); + EXPECT_EQ( m.getElement( 3, 9 ), 0 ); + EXPECT_EQ( m.getElement( 3, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 4, 0 ), 0 ); + EXPECT_EQ( m.getElement( 4, 1 ), 10 ); + EXPECT_EQ( m.getElement( 4, 2 ), 11 ); + EXPECT_EQ( m.getElement( 4, 3 ), 0 ); + EXPECT_EQ( m.getElement( 4, 4 ), 12 ); + EXPECT_EQ( m.getElement( 4, 5 ), 0 ); + EXPECT_EQ( m.getElement( 4, 6 ), 0 ); + EXPECT_EQ( m.getElement( 4, 7 ), 0 ); + EXPECT_EQ( m.getElement( 4, 8 ), 23 ); + EXPECT_EQ( m.getElement( 4, 9 ), 26 ); + EXPECT_EQ( m.getElement( 4, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 5, 0 ), 0 ); + EXPECT_EQ( m.getElement( 5, 1 ), 13 ); + EXPECT_EQ( m.getElement( 5, 2 ), 14 ); + EXPECT_EQ( m.getElement( 5, 3 ), 0 ); + EXPECT_EQ( m.getElement( 5, 4 ), 0 ); + EXPECT_EQ( m.getElement( 5, 5 ), 15 ); + EXPECT_EQ( m.getElement( 5, 6 ), 0 ); + EXPECT_EQ( m.getElement( 5, 7 ), 0 ); + EXPECT_EQ( m.getElement( 5, 8 ), 0 ); + EXPECT_EQ( m.getElement( 5, 9 ), 0 ); + EXPECT_EQ( m.getElement( 5, 10 ), 29 ); + + EXPECT_EQ( m.getElement( 6, 0 ), 0 ); + EXPECT_EQ( m.getElement( 6, 1 ), 16 ); + EXPECT_EQ( m.getElement( 6, 2 ), 0 ); + EXPECT_EQ( m.getElement( 6, 3 ), 17 ); + EXPECT_EQ( m.getElement( 6, 4 ), 0 ); + EXPECT_EQ( m.getElement( 6, 5 ), 0 ); + EXPECT_EQ( m.getElement( 6, 6 ), 18 ); + EXPECT_EQ( m.getElement( 6, 7 ), 0 ); + EXPECT_EQ( m.getElement( 6, 8 ), 0 ); + EXPECT_EQ( m.getElement( 6, 9 ), 0 ); + EXPECT_EQ( m.getElement( 6, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 7, 0 ), 0 ); + EXPECT_EQ( m.getElement( 7, 1 ), 19 ); + EXPECT_EQ( m.getElement( 7, 2 ), 0 ); + EXPECT_EQ( m.getElement( 7, 3 ), 20 ); + EXPECT_EQ( m.getElement( 7, 4 ), 0 ); + EXPECT_EQ( m.getElement( 7, 5 ), 0 ); + EXPECT_EQ( m.getElement( 7, 6 ), 0 ); + EXPECT_EQ( m.getElement( 7, 7 ), 21 ); + EXPECT_EQ( m.getElement( 7, 8 ), 0 ); + EXPECT_EQ( m.getElement( 7, 9 ), 0 ); + EXPECT_EQ( m.getElement( 7, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 8, 0 ), 0 ); + EXPECT_EQ( m.getElement( 8, 1 ), 0 ); + EXPECT_EQ( m.getElement( 8, 2 ), 22 ); + EXPECT_EQ( m.getElement( 8, 3 ), 0 ); + EXPECT_EQ( m.getElement( 8, 4 ), 23 ); + EXPECT_EQ( m.getElement( 8, 5 ), 0 ); + EXPECT_EQ( m.getElement( 8, 6 ), 0 ); + EXPECT_EQ( m.getElement( 8, 7 ), 0 ); + EXPECT_EQ( m.getElement( 8, 8 ), 24 ); + EXPECT_EQ( m.getElement( 8, 9 ), 0 ); + EXPECT_EQ( m.getElement( 8, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 9, 0 ), 0 ); + EXPECT_EQ( m.getElement( 9, 1 ), 0 ); + EXPECT_EQ( m.getElement( 9, 2 ), 25 ); + EXPECT_EQ( m.getElement( 9, 3 ), 0 ); + EXPECT_EQ( m.getElement( 9, 4 ), 26 ); + EXPECT_EQ( m.getElement( 9, 5 ), 0 ); + EXPECT_EQ( m.getElement( 9, 6 ), 0 ); + EXPECT_EQ( m.getElement( 9, 7 ), 0 ); + EXPECT_EQ( m.getElement( 9, 8 ), 0 ); + EXPECT_EQ( m.getElement( 9, 9 ), 27 ); + EXPECT_EQ( m.getElement( 9, 10 ), 0 ); + + EXPECT_EQ( m.getElement( 10, 0 ), 0 ); + EXPECT_EQ( m.getElement( 10, 1 ), 0 ); + EXPECT_EQ( m.getElement( 10, 2 ), 28 ); + EXPECT_EQ( m.getElement( 10, 3 ), 0 ); + EXPECT_EQ( m.getElement( 10, 4 ), 0 ); + EXPECT_EQ( m.getElement( 10, 5 ), 29 ); + EXPECT_EQ( m.getElement( 10, 6 ), 0 ); + EXPECT_EQ( m.getElement( 10, 7 ), 0 ); + EXPECT_EQ( m.getElement( 10, 8 ), 0 ); + EXPECT_EQ( m.getElement( 10, 9 ), 0 ); + EXPECT_EQ( m.getElement( 10, 10 ), 30 ); +} + + +template< typename Matrix > +void test_SetElement() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 10x10 sparse matrix: + * + * / 1 0 0 4 0 0 10 0 0 0 \ + * | 0 2 0 5 0 0 11 0 0 0 | + * | 0 0 3 6 0 0 12 0 0 0 | + * | 4 5 6 7 0 0 13 0 0 0 | + * | 0 0 0 0 8 0 14 0 0 0 | + * | 0 0 0 0 0 9 15 0 0 0 | + * | 10 11 12 13 14 15 16 0 0 0 | + * | 0 0 0 0 0 0 0 17 0 0 | + * | 0 0 0 0 0 0 0 0 18 0 | + * \ 0 0 0 0 0 0 0 0 0 19 / + */ + + Matrix m( { 1, 1, 1, 4, 1, 1, 7, 1, 1, 1 }, 10 ); + + RealType value = 1; + for( IndexType i = 0; i < 4; i++ ) + m.setElement( i, i, value++ ); + + for( IndexType i = 0; i < 4; i++ ) + m.setElement( 3, i, value++ ); + + for( IndexType i = 4; i < 6; i++ ) + m.setElement( i, i, value++ ); + + for( IndexType i = 0; i < 7; i++ ) + m.setElement( 6, i, value++ ); + + for( IndexType i = 7; i < 10; i++ ) + m.setElement( i, i, value++ ); + + EXPECT_EQ( m.getElement( 0, 0 ), 1 ); + EXPECT_EQ( m.getElement( 0, 1 ), 0 ); + EXPECT_EQ( m.getElement( 0, 2 ), 0 ); + EXPECT_EQ( m.getElement( 0, 3 ), 4 ); + EXPECT_EQ( m.getElement( 0, 4 ), 0 ); + EXPECT_EQ( m.getElement( 0, 5 ), 0 ); + EXPECT_EQ( m.getElement( 0, 6 ), 10 ); + EXPECT_EQ( m.getElement( 0, 7 ), 0 ); + EXPECT_EQ( m.getElement( 0, 8 ), 0 ); + EXPECT_EQ( m.getElement( 0, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 1, 0 ), 0 ); + EXPECT_EQ( m.getElement( 1, 1 ), 2 ); + EXPECT_EQ( m.getElement( 1, 2 ), 0 ); + EXPECT_EQ( m.getElement( 1, 3 ), 5 ); + EXPECT_EQ( m.getElement( 1, 4 ), 0 ); + EXPECT_EQ( m.getElement( 1, 5 ), 0 ); + EXPECT_EQ( m.getElement( 1, 6 ), 11 ); + EXPECT_EQ( m.getElement( 1, 7 ), 0 ); + EXPECT_EQ( m.getElement( 1, 8 ), 0 ); + EXPECT_EQ( m.getElement( 1, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 2, 0 ), 0 ); + EXPECT_EQ( m.getElement( 2, 1 ), 0 ); + EXPECT_EQ( m.getElement( 2, 2 ), 3 ); + EXPECT_EQ( m.getElement( 2, 3 ), 6 ); + EXPECT_EQ( m.getElement( 2, 4 ), 0 ); + EXPECT_EQ( m.getElement( 2, 5 ), 0 ); + EXPECT_EQ( m.getElement( 2, 6 ), 12 ); + EXPECT_EQ( m.getElement( 2, 7 ), 0 ); + EXPECT_EQ( m.getElement( 2, 8 ), 0 ); + EXPECT_EQ( m.getElement( 2, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 3, 0 ), 4 ); + EXPECT_EQ( m.getElement( 3, 1 ), 5 ); + EXPECT_EQ( m.getElement( 3, 2 ), 6 ); + EXPECT_EQ( m.getElement( 3, 3 ), 7 ); + EXPECT_EQ( m.getElement( 3, 4 ), 0 ); + EXPECT_EQ( m.getElement( 3, 5 ), 0 ); + EXPECT_EQ( m.getElement( 3, 6 ), 13 ); + EXPECT_EQ( m.getElement( 3, 7 ), 0 ); + EXPECT_EQ( m.getElement( 3, 8 ), 0 ); + EXPECT_EQ( m.getElement( 3, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 4, 0 ), 0 ); + EXPECT_EQ( m.getElement( 4, 1 ), 0 ); + EXPECT_EQ( m.getElement( 4, 2 ), 0 ); + EXPECT_EQ( m.getElement( 4, 3 ), 0 ); + EXPECT_EQ( m.getElement( 4, 4 ), 8 ); + EXPECT_EQ( m.getElement( 4, 5 ), 0 ); + EXPECT_EQ( m.getElement( 4, 6 ), 14 ); + EXPECT_EQ( m.getElement( 4, 7 ), 0 ); + EXPECT_EQ( m.getElement( 4, 8 ), 0 ); + EXPECT_EQ( m.getElement( 4, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 5, 0 ), 0 ); + EXPECT_EQ( m.getElement( 5, 1 ), 0 ); + EXPECT_EQ( m.getElement( 5, 2 ), 0 ); + EXPECT_EQ( m.getElement( 5, 3 ), 0 ); + EXPECT_EQ( m.getElement( 5, 4 ), 0 ); + EXPECT_EQ( m.getElement( 5, 5 ), 9 ); + EXPECT_EQ( m.getElement( 5, 6 ), 15 ); + EXPECT_EQ( m.getElement( 5, 7 ), 0 ); + EXPECT_EQ( m.getElement( 5, 8 ), 0 ); + EXPECT_EQ( m.getElement( 5, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 6, 0 ), 10 ); + EXPECT_EQ( m.getElement( 6, 1 ), 11 ); + EXPECT_EQ( m.getElement( 6, 2 ), 12 ); + EXPECT_EQ( m.getElement( 6, 3 ), 13 ); + EXPECT_EQ( m.getElement( 6, 4 ), 14 ); + EXPECT_EQ( m.getElement( 6, 5 ), 15 ); + EXPECT_EQ( m.getElement( 6, 6 ), 16 ); + EXPECT_EQ( m.getElement( 6, 7 ), 0 ); + EXPECT_EQ( m.getElement( 6, 8 ), 0 ); + EXPECT_EQ( m.getElement( 6, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 7, 0 ), 0 ); + EXPECT_EQ( m.getElement( 7, 1 ), 0 ); + EXPECT_EQ( m.getElement( 7, 2 ), 0 ); + EXPECT_EQ( m.getElement( 7, 3 ), 0 ); + EXPECT_EQ( m.getElement( 7, 4 ), 0 ); + EXPECT_EQ( m.getElement( 7, 5 ), 0 ); + EXPECT_EQ( m.getElement( 7, 6 ), 0 ); + EXPECT_EQ( m.getElement( 7, 7 ), 17 ); + EXPECT_EQ( m.getElement( 7, 8 ), 0 ); + EXPECT_EQ( m.getElement( 7, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 8, 0 ), 0 ); + EXPECT_EQ( m.getElement( 8, 1 ), 0 ); + EXPECT_EQ( m.getElement( 8, 2 ), 0 ); + EXPECT_EQ( m.getElement( 8, 3 ), 0 ); + EXPECT_EQ( m.getElement( 8, 4 ), 0 ); + EXPECT_EQ( m.getElement( 8, 5 ), 0 ); + EXPECT_EQ( m.getElement( 8, 6 ), 0 ); + EXPECT_EQ( m.getElement( 8, 7 ), 0 ); + EXPECT_EQ( m.getElement( 8, 8 ), 18 ); + EXPECT_EQ( m.getElement( 8, 9 ), 0 ); + + EXPECT_EQ( m.getElement( 9, 0 ), 0 ); + EXPECT_EQ( m.getElement( 9, 1 ), 0 ); + EXPECT_EQ( m.getElement( 9, 2 ), 0 ); + EXPECT_EQ( m.getElement( 9, 3 ), 0 ); + EXPECT_EQ( m.getElement( 9, 4 ), 0 ); + EXPECT_EQ( m.getElement( 9, 5 ), 0 ); + EXPECT_EQ( m.getElement( 9, 6 ), 0 ); + EXPECT_EQ( m.getElement( 9, 7 ), 0 ); + EXPECT_EQ( m.getElement( 9, 8 ), 0 ); + EXPECT_EQ( m.getElement( 9, 9 ), 19 ); +} + +template< typename Matrix > +void test_AddElement() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 6x5 sparse matrix: + * + * / 1 2 0 0 0 \ + * | 2 3 4 0 0 | + * | 0 4 5 6 0 | + * | 0 0 6 7 8 | + * | 0 0 0 8 9 | + * \ 0 0 0 0 10 / + */ + + const IndexType rows = 6; + const IndexType cols = 5; + + Matrix m( 6, 5, { + { 0, 0, 1 }, + { 1, 0, 2 }, { 1, 1, 3 }, + { 2, 1, 4 }, { 2, 2, 5 }, + { 3, 2, 6 }, { 3, 3, 7 }, + { 4, 3, 8 }, { 4, 4, 9 }, + { 5, 5, 10 } } ); + + // Check the set elements + EXPECT_EQ( m.getElement( 0, 0 ), 1 ); + EXPECT_EQ( m.getElement( 0, 1 ), 2 ); + EXPECT_EQ( m.getElement( 0, 2 ), 0 ); + EXPECT_EQ( m.getElement( 0, 3 ), 0 ); + EXPECT_EQ( m.getElement( 0, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 1, 0 ), 2 ); + EXPECT_EQ( m.getElement( 1, 1 ), 3 ); + EXPECT_EQ( m.getElement( 1, 2 ), 4 ); + EXPECT_EQ( m.getElement( 1, 3 ), 0 ); + EXPECT_EQ( m.getElement( 1, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 2, 0 ), 0 ); + EXPECT_EQ( m.getElement( 2, 1 ), 4 ); + EXPECT_EQ( m.getElement( 2, 2 ), 5 ); + EXPECT_EQ( m.getElement( 2, 3 ), 6 ); + EXPECT_EQ( m.getElement( 2, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 3, 0 ), 0 ); + EXPECT_EQ( m.getElement( 3, 1 ), 0 ); + EXPECT_EQ( m.getElement( 3, 2 ), 6 ); + EXPECT_EQ( m.getElement( 3, 3 ), 7 ); + EXPECT_EQ( m.getElement( 3, 4 ), 8 ); + + EXPECT_EQ( m.getElement( 4, 0 ), 0 ); + EXPECT_EQ( m.getElement( 4, 1 ), 0 ); + EXPECT_EQ( m.getElement( 4, 2 ), 0 ); + EXPECT_EQ( m.getElement( 4, 3 ), 8 ); + EXPECT_EQ( m.getElement( 4, 4 ), 9 ); + + EXPECT_EQ( m.getElement( 5, 0 ), 0 ); + EXPECT_EQ( m.getElement( 5, 1 ), 0 ); + EXPECT_EQ( m.getElement( 5, 2 ), 0 ); + EXPECT_EQ( m.getElement( 5, 3 ), 0 ); + EXPECT_EQ( m.getElement( 5, 4 ), 10 ); +############################################################################ + // Add new elements to the old elements with a multiplying factor applied to the old elements. + /* + * The following setup results in the following 6x5 sparse matrix: + * + * / 3 6 9 0 0 \ + * | 0 12 15 18 0 | + * | 0 0 21 24 27 | + * | 30 11 12 0 0 | + * | 0 35 14 15 0 | + * \ 0 0 16 41 18 / + */ + + RealType newValue = 1; + for( IndexType i = 0; i < cols - 2; i++ ) // 0th row + m.addElement( 0, i, newValue++, 2.0 ); + + for( IndexType i = 1; i < cols - 1; i++ ) // 1st row + m.addElement( 1, i, newValue++, 2.0 ); + + for( IndexType i = 2; i < cols; i++ ) // 2nd row + m.addElement( 2, i, newValue++, 2.0 ); + + for( IndexType i = 0; i < cols - 2; i++ ) // 3rd row + m.addElement( 3, i, newValue++, 2.0 ); + + for( IndexType i = 1; i < cols - 1; i++ ) // 4th row + m.addElement( 4, i, newValue++, 2.0 ); + + for( IndexType i = 2; i < cols; i++ ) // 5th row + m.addElement( 5, i, newValue++, 2.0 ); + + + EXPECT_EQ( m.getElement( 0, 0 ), 3 ); + EXPECT_EQ( m.getElement( 0, 1 ), 6 ); + EXPECT_EQ( m.getElement( 0, 2 ), 9 ); + EXPECT_EQ( m.getElement( 0, 3 ), 0 ); + EXPECT_EQ( m.getElement( 0, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 1, 0 ), 0 ); + EXPECT_EQ( m.getElement( 1, 1 ), 12 ); + EXPECT_EQ( m.getElement( 1, 2 ), 15 ); + EXPECT_EQ( m.getElement( 1, 3 ), 18 ); + EXPECT_EQ( m.getElement( 1, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 2, 0 ), 0 ); + EXPECT_EQ( m.getElement( 2, 1 ), 0 ); + EXPECT_EQ( m.getElement( 2, 2 ), 21 ); + EXPECT_EQ( m.getElement( 2, 3 ), 24 ); + EXPECT_EQ( m.getElement( 2, 4 ), 27 ); + + EXPECT_EQ( m.getElement( 3, 0 ), 30 ); + EXPECT_EQ( m.getElement( 3, 1 ), 11 ); + EXPECT_EQ( m.getElement( 3, 2 ), 12 ); + EXPECT_EQ( m.getElement( 3, 3 ), 0 ); + EXPECT_EQ( m.getElement( 3, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 4, 0 ), 0 ); + EXPECT_EQ( m.getElement( 4, 1 ), 35 ); + EXPECT_EQ( m.getElement( 4, 2 ), 14 ); + EXPECT_EQ( m.getElement( 4, 3 ), 15 ); + EXPECT_EQ( m.getElement( 4, 4 ), 0 ); + + EXPECT_EQ( m.getElement( 5, 0 ), 0 ); + EXPECT_EQ( m.getElement( 5, 1 ), 0 ); + EXPECT_EQ( m.getElement( 5, 2 ), 16 ); + EXPECT_EQ( m.getElement( 5, 3 ), 41 ); + EXPECT_EQ( m.getElement( 5, 4 ), 18 ); +} + +template< typename Matrix > +void test_VectorProduct() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + using VectorType = TNL::Containers::Vector< RealType, DeviceType, IndexType >; + + /* + * Sets up the following 4x4 sparse matrix: + * + * / 1 0 0 0 \ + * | 0 2 0 3 | + * | 0 4 0 0 | + * \ 0 0 5 0 / + */ + + const IndexType m_rows_1 = 4; + const IndexType m_cols_1 = 4; + + Matrix m_1; + m_1.reset(); + m_1.setDimensions( m_rows_1, m_cols_1 ); + typename Matrix::CompressedRowLengthsVector rowLengths_1; + rowLengths_1.setSize( m_rows_1 ); + rowLengths_1.setElement( 0, 1 ); + rowLengths_1.setElement( 1, 2 ); + rowLengths_1.setElement( 2, 1 ); + rowLengths_1.setElement( 3, 1 ); + m_1.setCompressedRowLengths( rowLengths_1 ); + + RealType value_1 = 1; + m_1.setElement( 0, 0, value_1++ ); // 0th row + + m_1.setElement( 1, 1, value_1++ ); // 1st row + m_1.setElement( 1, 3, value_1++ ); + + m_1.setElement( 2, 1, value_1++ ); // 2nd row + + m_1.setElement( 3, 2, value_1++ ); // 3rd row + + VectorType inVector_1; + inVector_1.setSize( m_cols_1 ); + for( IndexType i = 0; i < inVector_1.getSize(); i++ ) + inVector_1.setElement( i, 2 ); + + VectorType outVector_1; + outVector_1.setSize( m_rows_1 ); + for( IndexType j = 0; j < outVector_1.getSize(); j++ ) + outVector_1.setElement( j, 0 ); + + + m_1.vectorProduct( inVector_1, outVector_1 ); + + + EXPECT_EQ( outVector_1.getElement( 0 ), 2 ); + EXPECT_EQ( outVector_1.getElement( 1 ), 10 ); + EXPECT_EQ( outVector_1.getElement( 2 ), 8 ); + EXPECT_EQ( outVector_1.getElement( 3 ), 10 ); + + /* + * Sets up the following 4x4 sparse matrix: + * + * / 1 2 3 0 \ + * | 0 0 0 4 | + * | 5 6 7 0 | + * \ 0 8 0 0 / + */ + + const IndexType m_rows_2 = 4; + const IndexType m_cols_2 = 4; + + Matrix m_2( m_rows_2, m_cols_2 ); + typename Matrix::CompressedRowLengthsVector rowLengths_2{ 3, 1, 3, 1 }; + /*rowLengths_2 = 3; + rowLengths_2.setElement( 1, 1 ); + rowLengths_2.setElement( 3, 1 );*/ + m_2.setCompressedRowLengths( rowLengths_2 ); + + RealType value_2 = 1; + for( IndexType i = 0; i < 3; i++ ) // 0th row + m_2.setElement( 0, i, value_2++ ); + + m_2.setElement( 1, 3, value_2++ ); // 1st row + + for( IndexType i = 0; i < 3; i++ ) // 2nd row + m_2.setElement( 2, i, value_2++ ); + + for( IndexType i = 1; i < 2; i++ ) // 3rd row + m_2.setElement( 3, i, value_2++ ); + + VectorType inVector_2; + inVector_2.setSize( m_cols_2 ); + for( IndexType i = 0; i < inVector_2.getSize(); i++ ) + inVector_2.setElement( i, 2 ); + + VectorType outVector_2; + outVector_2.setSize( m_rows_2 ); + for( IndexType j = 0; j < outVector_2.getSize(); j++ ) + outVector_2.setElement( j, 0 ); + + m_2.vectorProduct( inVector_2, outVector_2 ); + + EXPECT_EQ( outVector_2.getElement( 0 ), 12 ); + EXPECT_EQ( outVector_2.getElement( 1 ), 8 ); + EXPECT_EQ( outVector_2.getElement( 2 ), 36 ); + EXPECT_EQ( outVector_2.getElement( 3 ), 16 ); + + /* + * Sets up the following 4x4 sparse matrix: + * + * / 1 2 3 0 \ + * | 0 4 5 6 | + * | 7 8 9 0 | + * \ 0 10 11 12 / + */ + + const IndexType m_rows_3 = 4; + const IndexType m_cols_3 = 4; + + Matrix m_3( m_rows_3, m_cols_3 ); + typename Matrix::CompressedRowLengthsVector rowLengths_3{ 3, 3, 3, 3 }; + m_3.setCompressedRowLengths( rowLengths_3 ); + + RealType value_3 = 1; + for( IndexType i = 0; i < 3; i++ ) // 0th row + m_3.setElement( 0, i, value_3++ ); + + for( IndexType i = 1; i < 4; i++ ) + m_3.setElement( 1, i, value_3++ ); // 1st row + + for( IndexType i = 0; i < 3; i++ ) // 2nd row + m_3.setElement( 2, i, value_3++ ); + + for( IndexType i = 1; i < 4; i++ ) // 3rd row + m_3.setElement( 3, i, value_3++ ); + + VectorType inVector_3; + inVector_3.setSize( m_cols_3 ); + for( IndexType i = 0; i < inVector_3.getSize(); i++ ) + inVector_3.setElement( i, 2 ); + + VectorType outVector_3; + outVector_3.setSize( m_rows_3 ); + for( IndexType j = 0; j < outVector_3.getSize(); j++ ) + outVector_3.setElement( j, 0 ); + + m_3.vectorProduct( inVector_3, outVector_3 ); + + EXPECT_EQ( outVector_3.getElement( 0 ), 12 ); + EXPECT_EQ( outVector_3.getElement( 1 ), 30 ); + EXPECT_EQ( outVector_3.getElement( 2 ), 48 ); + EXPECT_EQ( outVector_3.getElement( 3 ), 66 ); + + /* + * Sets up the following 8x8 sparse matrix: + * + * / 1 2 3 0 0 4 0 0 \ + * | 0 5 6 7 8 0 0 0 | + * | 9 10 11 12 13 0 0 0 | + * | 0 14 15 16 17 0 0 0 | + * | 0 0 18 19 20 21 0 0 | + * | 0 0 0 22 23 24 25 0 | + * | 26 27 28 29 30 0 0 0 | + * \ 31 32 33 34 35 0 0 0 / + */ + + const IndexType m_rows_4 = 8; + const IndexType m_cols_4 = 8; + + Matrix m_4( m_rows_4, m_cols_4 ); + typename Matrix::CompressedRowLengthsVector rowLengths_4{ 4, 4, 5, 4, 4, 4, 5, 5 }; + /*rowLengths_4.setSize( m_rows_4 ); + rowLengths_4.setValue( 4 ); + rowLengths_4.setElement( 2, 5 ); + rowLengths_4.setElement( 6, 5 ); + rowLengths_4.setElement( 7, 5 );*/ + m_4.setCompressedRowLengths( rowLengths_4 ); + + RealType value_4 = 1; + for( IndexType i = 0; i < 3; i++ ) // 0th row + m_4.setElement( 0, i, value_4++ ); + + m_4.setElement( 0, 5, value_4++ ); + + for( IndexType i = 1; i < 5; i++ ) // 1st row + m_4.setElement( 1, i, value_4++ ); + + for( IndexType i = 0; i < 5; i++ ) // 2nd row + m_4.setElement( 2, i, value_4++ ); + + for( IndexType i = 1; i < 5; i++ ) // 3rd row + m_4.setElement( 3, i, value_4++ ); + + for( IndexType i = 2; i < 6; i++ ) // 4th row + m_4.setElement( 4, i, value_4++ ); + + for( IndexType i = 3; i < 7; i++ ) // 5th row + m_4.setElement( 5, i, value_4++ ); + + for( IndexType i = 0; i < 5; i++ ) // 6th row + m_4.setElement( 6, i, value_4++ ); + + for( IndexType i = 0; i < 5; i++ ) // 7th row + m_4.setElement( 7, i, value_4++ ); + + VectorType inVector_4; + inVector_4.setSize( m_cols_4 ); + for( IndexType i = 0; i < inVector_4.getSize(); i++ ) + inVector_4.setElement( i, 2 ); + + VectorType outVector_4; + outVector_4.setSize( m_rows_4 ); + for( IndexType j = 0; j < outVector_4.getSize(); j++ ) + outVector_4.setElement( j, 0 ); + + m_4.vectorProduct( inVector_4, outVector_4 ); + + EXPECT_EQ( outVector_4.getElement( 0 ), 20 ); + EXPECT_EQ( outVector_4.getElement( 1 ), 52 ); + EXPECT_EQ( outVector_4.getElement( 2 ), 110 ); + EXPECT_EQ( outVector_4.getElement( 3 ), 124 ); + EXPECT_EQ( outVector_4.getElement( 4 ), 156 ); + EXPECT_EQ( outVector_4.getElement( 5 ), 188 ); + EXPECT_EQ( outVector_4.getElement( 6 ), 280 ); + EXPECT_EQ( outVector_4.getElement( 7 ), 330 ); + + + /* + * Sets up the following 8x8 sparse matrix: + * + * / 1 2 3 0 4 5 0 1 \ 6 + * | 0 6 0 7 0 0 0 1 | 3 + * | 0 8 9 0 10 0 0 1 | 4 + * | 0 11 12 13 14 0 0 1 | 5 + * | 0 15 0 0 0 0 0 1 | 2 + * | 0 16 17 18 19 20 21 1 | 7 + * | 22 23 24 25 26 27 28 1 | 8 + * \ 29 30 31 32 33 34 35 36 / 8 + */ + + const IndexType m_rows_5 = 8; + const IndexType m_cols_5 = 8; + + Matrix m_5( m_rows_5, m_cols_5 ); + typename Matrix::CompressedRowLengthsVector rowLengths_5{ 6, 3, 4, 5, 2, 7, 8, 8 }; + m_5.setCompressedRowLengths( rowLengths_5 ); + + RealType value_5 = 1; + for( IndexType i = 0; i < 3; i++ ) // 0th row + m_5.setElement( 0, i, value_5++ ); + + m_5.setElement( 0, 4, value_5++ ); // 0th row + m_5.setElement( 0, 5, value_5++ ); + + m_5.setElement( 1, 1, value_5++ ); // 1st row + m_5.setElement( 1, 3, value_5++ ); + + for( IndexType i = 1; i < 3; i++ ) // 2nd row + m_5.setElement( 2, i, value_5++ ); + + m_5.setElement( 2, 4, value_5++ ); // 2nd row + + for( IndexType i = 1; i < 5; i++ ) // 3rd row + m_5.setElement( 3, i, value_5++ ); + + m_5.setElement( 4, 1, value_5++ ); // 4th row + + for( IndexType i = 1; i < 7; i++ ) // 5th row + m_5.setElement( 5, i, value_5++ ); + + for( IndexType i = 0; i < 7; i++ ) // 6th row + m_5.setElement( 6, i, value_5++ ); + + for( IndexType i = 0; i < 8; i++ ) // 7th row + m_5.setElement( 7, i, value_5++ ); + + for( IndexType i = 0; i < 7; i++ ) // 1s at the end of rows + m_5.setElement( i, 7, 1); + + VectorType inVector_5; + inVector_5.setSize( m_cols_5 ); + for( IndexType i = 0; i < inVector_5.getSize(); i++ ) + inVector_5.setElement( i, 2 ); + + VectorType outVector_5; + outVector_5.setSize( m_rows_5 ); + for( IndexType j = 0; j < outVector_5.getSize(); j++ ) + outVector_5.setElement( j, 0 ); + + m_5.vectorProduct( inVector_5, outVector_5 ); + + EXPECT_EQ( outVector_5.getElement( 0 ), 32 ); + EXPECT_EQ( outVector_5.getElement( 1 ), 28 ); + EXPECT_EQ( outVector_5.getElement( 2 ), 56 ); + EXPECT_EQ( outVector_5.getElement( 3 ), 102 ); + EXPECT_EQ( outVector_5.getElement( 4 ), 32 ); + EXPECT_EQ( outVector_5.getElement( 5 ), 224 ); + EXPECT_EQ( outVector_5.getElement( 6 ), 352 ); + EXPECT_EQ( outVector_5.getElement( 7 ), 520 ); +} + +template< typename Matrix > +void test_RowsReduction() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 8x8 sparse matrix: + * + * / 1 2 3 0 4 5 0 1 \ 6 + * | 0 6 0 7 0 0 0 1 | 3 + * | 0 8 9 0 10 0 0 1 | 4 + * | 0 11 12 13 14 0 0 1 | 5 + * | 0 15 0 0 0 0 0 1 | 2 + * | 0 16 17 18 19 20 21 1 | 7 + * | 22 23 24 25 26 27 28 1 | 8 + * \ 29 30 31 32 33 34 35 36 / 8 + */ + + const IndexType rows = 8; + const IndexType cols = 8; + + Matrix m; + m.setDimensions( rows, cols ); + typename Matrix::RowsCapacitiesType rowsCapacities{ 6, 3, 4, 5, 2, 7, 8, 8 }; + m.setCompressedRowLengths( rowsCapacities ); + + RealType value = 1; + for( IndexType i = 0; i < 3; i++ ) // 0th row + m.setElement( 0, i, value++ ); + + m.setElement( 0, 4, value++ ); // 0th row + m.setElement( 0, 5, value++ ); + + m.setElement( 1, 1, value++ ); // 1st row + m.setElement( 1, 3, value++ ); + + for( IndexType i = 1; i < 3; i++ ) // 2nd row + m.setElement( 2, i, value++ ); + + m.setElement( 2, 4, value++ ); // 2nd row + + for( IndexType i = 1; i < 5; i++ ) // 3rd row + m.setElement( 3, i, value++ ); + + m.setElement( 4, 1, value++ ); // 4th row + + for( IndexType i = 1; i < 7; i++ ) // 5th row + m.setElement( 5, i, value++ ); + + for( IndexType i = 0; i < 7; i++ ) // 6th row + m.setElement( 6, i, value++ ); + + for( IndexType i = 0; i < 8; i++ ) // 7th row + m.setElement( 7, i, value++ ); + + for( IndexType i = 0; i < 7; i++ ) // 1s at the end of rows + m.setElement( i, 7, 1); + + //// + // Compute number of non-zero elements in rows. + typename Matrix::RowsCapacitiesType rowLengths( rows ); + auto rowLengths_view = rowLengths.getView(); + auto fetch = [] __cuda_callable__ ( IndexType row, IndexType column, IndexType globalIdx, const RealType& value ) -> IndexType { + return ( value != 0.0 ); + }; + auto reduce = [] __cuda_callable__ ( IndexType& aux, const IndexType a ) { + aux += a; + }; + auto keep = [=] __cuda_callable__ ( const IndexType rowIdx, const IndexType value ) mutable { + rowLengths_view[ rowIdx ] = value; + }; + m.allRowsReduction( fetch, reduce, keep, 0 ); + EXPECT_EQ( rowsCapacities, rowLengths ); + m.getCompressedRowLengths( rowLengths ); + EXPECT_EQ( rowsCapacities, rowLengths ); + + //// + // Compute max norm + TNL::Containers::Vector< RealType, DeviceType, IndexType > rowSums( rows ); + auto rowSums_view = rowSums.getView(); + auto max_fetch = [] __cuda_callable__ ( IndexType row, IndexType column, IndexType globalIdx, const RealType& value ) -> IndexType { + return abs( value ); + }; + auto max_reduce = [] __cuda_callable__ ( IndexType& aux, const IndexType a ) { + aux += a; + }; + auto max_keep = [=] __cuda_callable__ ( const IndexType rowIdx, const IndexType value ) mutable { + rowSums_view[ rowIdx ] = value; + }; + m.allRowsReduction( max_fetch, max_reduce, max_keep, 0 ); + const RealType maxNorm = TNL::max( rowSums ); + EXPECT_EQ( maxNorm, 260 ) ; // 29+30+31+32+33+34+35+36 +} + +template< typename Matrix > +void test_PerformSORIteration() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 4x4 sparse matrix: + * + * / 4 1 0 0 \ + * | 1 4 1 0 | + * | 0 1 4 1 | + * \ 0 0 1 4 / + */ + + const IndexType m_rows = 4; + const IndexType m_cols = 4; + + Matrix m( m_rows, m_cols ); + typename Matrix::CompressedRowLengthsVector rowLengths( m_rows ); + rowLengths = 3; + m.setCompressedRowLengths( rowLengths ); + + m.setElement( 0, 0, 4.0 ); // 0th row + m.setElement( 0, 1, 1.0); + + m.setElement( 1, 0, 1.0 ); // 1st row + m.setElement( 1, 1, 4.0 ); + m.setElement( 1, 2, 1.0 ); + + m.setElement( 2, 1, 1.0 ); // 2nd row + m.setElement( 2, 2, 4.0 ); + m.setElement( 2, 3, 1.0 ); + + m.setElement( 3, 2, 1.0 ); // 3rd row + m.setElement( 3, 3, 4.0 ); + + RealType bVector [ 4 ] = { 1, 1, 1, 1 }; + RealType xVector [ 4 ] = { 1, 1, 1, 1 }; + + IndexType row = 0; + RealType omega = 1; + + m.performSORIteration( bVector, row++, xVector, omega); + + EXPECT_EQ( xVector[ 0 ], 0.0 ); + EXPECT_EQ( xVector[ 1 ], 1.0 ); + EXPECT_EQ( xVector[ 2 ], 1.0 ); + EXPECT_EQ( xVector[ 3 ], 1.0 ); + + m.performSORIteration( bVector, row++, xVector, omega); + + EXPECT_EQ( xVector[ 0 ], 0.0 ); + EXPECT_EQ( xVector[ 1 ], 0.0 ); + EXPECT_EQ( xVector[ 2 ], 1.0 ); + EXPECT_EQ( xVector[ 3 ], 1.0 ); + + m.performSORIteration( bVector, row++, xVector, omega); + + EXPECT_EQ( xVector[ 0 ], 0.0 ); + EXPECT_EQ( xVector[ 1 ], 0.0 ); + EXPECT_EQ( xVector[ 2 ], 0.0 ); + EXPECT_EQ( xVector[ 3 ], 1.0 ); + + m.performSORIteration( bVector, row++, xVector, omega); + + EXPECT_EQ( xVector[ 0 ], 0.0 ); + EXPECT_EQ( xVector[ 1 ], 0.0 ); + EXPECT_EQ( xVector[ 2 ], 0.0 ); + EXPECT_EQ( xVector[ 3 ], 0.25 ); +} + +template< typename Matrix > +void test_SaveAndLoad( const char* filename ) +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 4x4 sparse matrix: + * + * / 1 2 3 0 \ + * | 0 4 0 5 | + * | 6 7 8 0 | + * \ 0 9 10 11 / + */ + + const IndexType m_rows = 4; + const IndexType m_cols = 4; + + Matrix savedMatrix( m_rows, m_cols ); + typename Matrix::CompressedRowLengthsVector rowLengths( m_rows ); + rowLengths = 3; + savedMatrix.setCompressedRowLengths( rowLengths ); + + RealType value = 1; + for( IndexType i = 0; i < m_cols - 1; i++ ) // 0th row + savedMatrix.setElement( 0, i, value++ ); + + savedMatrix.setElement( 1, 1, value++ ); + savedMatrix.setElement( 1, 3, value++ ); // 1st row + + for( IndexType i = 0; i < m_cols - 1; i++ ) // 2nd row + savedMatrix.setElement( 2, i, value++ ); + + for( IndexType i = 1; i < m_cols; i++ ) // 3rd row + savedMatrix.setElement( 3, i, value++ ); + + ASSERT_NO_THROW( savedMatrix.save( filename ) ); + + Matrix loadedMatrix( m_rows, m_cols ); + typename Matrix::CompressedRowLengthsVector rowLengths2( m_rows ); + rowLengths2 = 3; + loadedMatrix.setCompressedRowLengths( rowLengths2 ); + + ASSERT_NO_THROW( loadedMatrix.load( filename ) ); + + EXPECT_EQ( savedMatrix.getElement( 0, 0 ), loadedMatrix.getElement( 0, 0 ) ); + EXPECT_EQ( savedMatrix.getElement( 0, 1 ), loadedMatrix.getElement( 0, 1 ) ); + EXPECT_EQ( savedMatrix.getElement( 0, 2 ), loadedMatrix.getElement( 0, 2 ) ); + EXPECT_EQ( savedMatrix.getElement( 0, 3 ), loadedMatrix.getElement( 0, 3 ) ); + + EXPECT_EQ( savedMatrix.getElement( 1, 0 ), loadedMatrix.getElement( 1, 0 ) ); + EXPECT_EQ( savedMatrix.getElement( 1, 1 ), loadedMatrix.getElement( 1, 1 ) ); + EXPECT_EQ( savedMatrix.getElement( 1, 2 ), loadedMatrix.getElement( 1, 2 ) ); + EXPECT_EQ( savedMatrix.getElement( 1, 3 ), loadedMatrix.getElement( 1, 3 ) ); + + EXPECT_EQ( savedMatrix.getElement( 2, 0 ), loadedMatrix.getElement( 2, 0 ) ); + EXPECT_EQ( savedMatrix.getElement( 2, 1 ), loadedMatrix.getElement( 2, 1 ) ); + EXPECT_EQ( savedMatrix.getElement( 2, 2 ), loadedMatrix.getElement( 2, 2 ) ); + EXPECT_EQ( savedMatrix.getElement( 2, 3 ), loadedMatrix.getElement( 2, 3 ) ); + + EXPECT_EQ( savedMatrix.getElement( 3, 0 ), loadedMatrix.getElement( 3, 0 ) ); + EXPECT_EQ( savedMatrix.getElement( 3, 1 ), loadedMatrix.getElement( 3, 1 ) ); + EXPECT_EQ( savedMatrix.getElement( 3, 2 ), loadedMatrix.getElement( 3, 2 ) ); + EXPECT_EQ( savedMatrix.getElement( 3, 3 ), loadedMatrix.getElement( 3, 3 ) ); + + EXPECT_EQ( savedMatrix.getElement( 0, 0 ), 1 ); + EXPECT_EQ( savedMatrix.getElement( 0, 1 ), 2 ); + EXPECT_EQ( savedMatrix.getElement( 0, 2 ), 3 ); + EXPECT_EQ( savedMatrix.getElement( 0, 3 ), 0 ); + + EXPECT_EQ( savedMatrix.getElement( 1, 0 ), 0 ); + EXPECT_EQ( savedMatrix.getElement( 1, 1 ), 4 ); + EXPECT_EQ( savedMatrix.getElement( 1, 2 ), 0 ); + EXPECT_EQ( savedMatrix.getElement( 1, 3 ), 5 ); + + EXPECT_EQ( savedMatrix.getElement( 2, 0 ), 6 ); + EXPECT_EQ( savedMatrix.getElement( 2, 1 ), 7 ); + EXPECT_EQ( savedMatrix.getElement( 2, 2 ), 8 ); + EXPECT_EQ( savedMatrix.getElement( 2, 3 ), 0 ); + + EXPECT_EQ( savedMatrix.getElement( 3, 0 ), 0 ); + EXPECT_EQ( savedMatrix.getElement( 3, 1 ), 9 ); + EXPECT_EQ( savedMatrix.getElement( 3, 2 ), 10 ); + EXPECT_EQ( savedMatrix.getElement( 3, 3 ), 11 ); + + EXPECT_EQ( std::remove( filename ), 0 ); +} + +template< typename Matrix > +void test_Print() +{ + using RealType = typename Matrix::RealType; + using DeviceType = typename Matrix::DeviceType; + using IndexType = typename Matrix::IndexType; + + /* + * Sets up the following 5x4 sparse matrix: + * + * / 1 2 3 0 \ + * | 0 0 0 4 | + * | 5 6 7 0 | + * | 0 8 9 10 | + * \ 0 0 11 12 / + */ + + const IndexType m_rows = 5; + const IndexType m_cols = 4; + + Matrix m( m_rows, m_cols ); + typename Matrix::CompressedRowLengthsVector rowLengths( m_rows ); + rowLengths = 3; + m.setCompressedRowLengths( rowLengths ); + + RealType value = 1; + for( IndexType i = 0; i < m_cols - 1; i++ ) // 0th row + m.setElement( 0, i, value++ ); + + m.setElement( 1, 3, value++ ); // 1st row + + for( IndexType i = 0; i < m_cols - 1; i++ ) // 2nd row + m.setElement( 2, i, value++ ); + + for( IndexType i = 1; i < m_cols; i++ ) // 3rd row + m.setElement( 3, i, value++ ); + + for( IndexType i = 2; i < m_cols; i++ ) // 4th row + m.setElement( 4, i, value++ ); + + std::stringstream printed; + std::stringstream couted; + + //change the underlying buffer and save the old buffer + auto old_buf = std::cout.rdbuf(printed.rdbuf()); + + m.print( std::cout ); //all the std::cout goes to ss + + std::cout.rdbuf(old_buf); //reset + + couted << "Row: 0 -> Col:0->1 Col:1->2 Col:2->3\t\n" + "Row: 1 -> Col:3->4\t\n" + "Row: 2 -> Col:0->5 Col:1->6 Col:2->7\t\n" + "Row: 3 -> Col:1->8 Col:2->9 Col:3->10\t\n" + "Row: 4 -> Col:2->11 Col:3->12\t\n"; + + EXPECT_EQ( printed.str(), couted.str() ); +} + +#endif