diff --git a/src/TNL/Matrices/SparseMatrix.h b/src/TNL/Matrices/SparseMatrix.h
index b510636f55d101492552fce1f2830d898f6c26cd..268fba6d39a7b26dc36431fbac63a318a7796782 100644
--- a/src/TNL/Matrices/SparseMatrix.h
+++ b/src/TNL/Matrices/SparseMatrix.h
@@ -34,10 +34,17 @@ class SparseMatrix : public Matrix< Real, Device, Index, RealAllocator >
       using IndexType = Index;
       using RealAllocatorType = RealAllocator;
       using IndexAllocatorType = IndexAllocator;
-      using CompressedRowLengthsVectorView = Containers::VectorView< IndexType, DeviceType, IndexType >;
-      using ConstCompressedRowLengthsVectorView = typename CompressedRowLengthsVectorView::ConstViewType;
+      using RowsCapacitiesType = Containers::Vector< IndexType, DeviceType, IndexType >;
+      using RowsCapacitiesView = Containers::VectorView< IndexType, DeviceType, IndexType >;
+      using ConstRowsCapacitiesView = typename RowsCapacitiesView::ConstViewType;
       using ValuesVectorType = typename Matrix< Real, Device, Index, RealAllocator >::ValuesVector;
       using ColumnsVectorType = Containers::Vector< IndexType, DeviceType, IndexType, IndexAllocatorType >;
+      
+      // TODO: remove this - it is here only for compatibility with original matrix implementation
+      typedef Containers::Vector< IndexType, DeviceType, IndexType > CompressedRowLengthsVector;
+      typedef Containers::VectorView< IndexType, DeviceType, IndexType > CompressedRowLengthsVectorView;
+      typedef typename CompressedRowLengthsVectorView::ConstViewType ConstCompressedRowLengthsVectorView;
+
 
       SparseMatrix( const RealAllocatorType& realAllocator = RealAllocatorType(),
                     const IndexAllocatorType& indexAllocator = IndexAllocatorType() );
@@ -158,6 +165,12 @@ class SparseMatrix : public Matrix< Real, Device, Index, RealAllocator >
                              const RealType& matrixMultiplicator = 1.0 );
        */
 
+      template< typename Fetch, typename Reduce, typename Keep, typename FetchReal >
+      void rowsReduction( IndexType first, IndexType last, Fetch& fetch, Reduce& reduce, Keep& keep, const FetchReal& zero ) const;
+      
+      template< typename Fetch, typename Reduce, typename Keep, typename FetchReal >
+      void allRowsReduction( Fetch& fetch, Reduce& reduce, Keep& keep, const FetchReal& zero ) const;
+
       template< typename Vector1, typename Vector2 >
       bool performSORIteration( const Vector1& b,
                                 const IndexType row,
diff --git a/src/TNL/Matrices/SparseMatrix.hpp b/src/TNL/Matrices/SparseMatrix.hpp
index 1c243bcea886d27b093daef4a1befe948953398a..e26693f6a12953d59a5950b9def449121b68de75 100644
--- a/src/TNL/Matrices/SparseMatrix.hpp
+++ b/src/TNL/Matrices/SparseMatrix.hpp
@@ -517,6 +517,44 @@ vectorProduct( const InVector& inVector,
    this->segments.segmentsReduction( 0, this->getRows(), fetch, reduction, keeper, ( RealType ) 0.0 );
 }
 
+template< typename Real,
+          template< typename, typename > class Segments,
+          typename Device,
+          typename Index,
+          typename RealAllocator,
+          typename IndexAllocator >
+   template< typename Fetch, typename Reduce, typename Keep, typename FetchValue >
+void
+SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >::
+rowsReduction( IndexType first, IndexType last, Fetch& fetch, Reduce& reduce, Keep& keep, const FetchValue& zero ) const
+{
+   const auto columns_view = this->columnIndexes.getConstView();
+   const auto values_view = this->values.getConstView();
+   const IndexType paddingIndex_ = this->getPaddingIndex();
+   auto fetch_ = [=] __cuda_callable__ ( IndexType rowIdx, IndexType globalIdx ) mutable -> decltype( fetch( IndexType(), IndexType(), RealType() ) ) {
+      IndexType columnIdx = columns_view[ globalIdx ];
+      if( columnIdx != paddingIndex_ )
+         return fetch( rowIdx, columnIdx, values_view[ globalIdx ] );
+      return zero;
+   };
+   this->segments.segmentsReduction( first, last, fetch_, reduce, keep, zero );
+}
+
+template< typename Real,
+          template< typename, typename > class Segments,
+          typename Device,
+          typename Index,
+          typename RealAllocator,
+          typename IndexAllocator >
+   template< typename Fetch, typename Reduce, typename Keep, typename FetchReal >
+void
+SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >::
+allRowsReduction( Fetch& fetch, Reduce& reduce, Keep& keep, const FetchReal& zero ) const
+{
+   this->rowsReduction( 0, this->getRows(), fetch, reduce, keep, zero );
+}
+
+
 /*template< typename Real,
           template< typename, typename > class Segments,
           typename Device,
@@ -576,7 +614,11 @@ SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >&
 SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >::
 operator=( const SparseMatrix& matrix )
 {
-
+   Matrix< Real, Device, Index >::operator=( matrix );
+   this->columnIndexes = matrix.columnIndexes;
+   this->segments = matrix.segments;
+   this->indexAlloctor = matrix.indexAllocator;
+   this->realAllocator = matrix.realAllocator;
 }
 
 // cross-device copy assignment
@@ -596,7 +638,12 @@ SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >&
 SparseMatrix< Real, Segments, Device, Index, RealAllocator, IndexAllocator >::
 operator=( const SparseMatrix< Real2, Segments2, Device2, Index2, RealAllocator2, IndexAllocator2 >& matrix )
 {
-
+   if( std::is_same< Device, Device2 >::value )
+   {
+      
+   }
+      
+   
 }
 
 template< typename Real,
diff --git a/src/UnitTests/Matrices/SparseMatrixTest.hpp b/src/UnitTests/Matrices/SparseMatrixTest.hpp
index 5dcd96ebc7c5d0cac1e6a7f1c5b031f27efe79a6..b366f4e2fea5b8688ee89fed3cf4d6111cbf484b 100644
--- a/src/UnitTests/Matrices/SparseMatrixTest.hpp
+++ b/src/UnitTests/Matrices/SparseMatrixTest.hpp
@@ -908,18 +908,18 @@ void test_VectorProduct()
     EXPECT_EQ( outVector_4.getElement( 7 ), 330 );
     
   
-/*
- * Sets up the following 8x8 sparse matrix:
- *
- *    /  1  2  3  0  4  5  0  1 \   6
- *    |  0  6  0  7  0  0  0  1 |   3
- *    |  0  8  9  0 10  0  0  1 |   4
- *    |  0 11 12 13 14  0  0  1 |   5
- *    |  0 15  0  0  0  0  0  1 |   2
- *    |  0 16 17 18 19 20 21  1 |   7
- *    | 22 23 24 25 26 27 28  1 |   8
- *    \ 29 30 31 32 33 34 35 36 /   8
- */
+   /*
+    * Sets up the following 8x8 sparse matrix:
+    *
+    *    /  1  2  3  0  4  5  0  1 \   6
+    *    |  0  6  0  7  0  0  0  1 |   3
+    *    |  0  8  9  0 10  0  0  1 |   4
+    *    |  0 11 12 13 14  0  0  1 |   5
+    *    |  0 15  0  0  0  0  0  1 |   2
+    *    |  0 16 17 18 19 20 21  1 |   7
+    *    | 22 23 24 25 26 27 28  1 |   8
+    *    \ 29 30 31 32 33 34 35 36 /   8
+    */
 
     const IndexType m_rows_5 = 8;
     const IndexType m_cols_5 = 8;
@@ -970,20 +970,18 @@ void test_VectorProduct()
 
     for( IndexType i = 0; i < 7; i++ )            // 1s at the end of rows
         m_5.setElement( i, 7, 1);
-    
+
     VectorType inVector_5;
     inVector_5.setSize( m_cols_5 );
-    for( IndexType i = 0; i < inVector_5.getSize(); i++ )        
+    for( IndexType i = 0; i < inVector_5.getSize(); i++ )
         inVector_5.setElement( i, 2 );
 
     VectorType outVector_5;  
     outVector_5.setSize( m_rows_5 );
     for( IndexType j = 0; j < outVector_5.getSize(); j++ )
         outVector_5.setElement( j, 0 );
-    
-    
+
     m_5.vectorProduct( inVector_5, outVector_5 );
-    
 
     EXPECT_EQ( outVector_5.getElement( 0 ),  32 );
     EXPECT_EQ( outVector_5.getElement( 1 ),  28 );
@@ -995,6 +993,109 @@ void test_VectorProduct()
     EXPECT_EQ( outVector_5.getElement( 7 ), 520 );
 }
 
+template< typename Matrix >
+void test_RowsReduction()
+{
+   using RealType = typename Matrix::RealType;
+   using DeviceType = typename Matrix::DeviceType;
+   using IndexType = typename Matrix::IndexType;
+
+   /*
+    * Sets up the following 8x8 sparse matrix:
+    *
+    *    /  1  2  3  0  4  5  0  1 \   6
+    *    |  0  6  0  7  0  0  0  1 |   3
+    *    |  0  8  9  0 10  0  0  1 |   4
+    *    |  0 11 12 13 14  0  0  1 |   5
+    *    |  0 15  0  0  0  0  0  1 |   2
+    *    |  0 16 17 18 19 20 21  1 |   7
+    *    | 22 23 24 25 26 27 28  1 |   8
+    *    \ 29 30 31 32 33 34 35 36 /   8
+    */
+
+   const IndexType rows = 8;
+   const IndexType cols = 8;
+
+   Matrix m;
+   m.setDimensions( rows, cols );
+   typename Matrix::RowsCapacitiesType rowsCapacities( rows );
+   //rowLengths.setSize( rows );
+   rowsCapacities.setElement(0, 6);
+   rowsCapacities.setElement(1, 3);
+   rowsCapacities.setElement(2, 4);
+   rowsCapacities.setElement(3, 5);
+   rowsCapacities.setElement(4, 2);
+   rowsCapacities.setElement(5, 7);
+   rowsCapacities.setElement(6, 8);
+   rowsCapacities.setElement(7, 8);
+   m.setCompressedRowLengths( rowsCapacities );
+
+   RealType value = 1;
+   for( IndexType i = 0; i < 3; i++ )   // 0th row
+      m.setElement( 0, i, value++ );
+
+   m.setElement( 0, 4, value++ );           // 0th row
+   m.setElement( 0, 5, value++ );
+
+   m.setElement( 1, 1, value++ );           // 1st row
+   m.setElement( 1, 3, value++ );
+
+   for( IndexType i = 1; i < 3; i++ )            // 2nd row
+      m.setElement( 2, i, value++ );
+
+   m.setElement( 2, 4, value++ );           // 2nd row
+
+   for( IndexType i = 1; i < 5; i++ )            // 3rd row
+      m.setElement( 3, i, value++ );
+
+   m.setElement( 4, 1, value++ );           // 4th row
+
+   for( IndexType i = 1; i < 7; i++ )            // 5th row
+      m.setElement( 5, i, value++ );
+
+   for( IndexType i = 0; i < 7; i++ )            // 6th row
+      m.setElement( 6, i, value++ );
+
+   for( IndexType i = 0; i < 8; i++ )            // 7th row
+       m.setElement( 7, i, value++ );
+
+   for( IndexType i = 0; i < 7; i++ )            // 1s at the end of rows
+      m.setElement( i, 7, 1);
+
+   ////
+   // Compute number of non-zero elements in rows.
+   typename Matrix::RowsCapacitiesType rowLengths( rows );
+   auto rowLengths_view = rowLengths.getView();
+   auto fetch = [] __cuda_callable__ ( IndexType row, IndexType column, const RealType& value ) -> IndexType {
+      return ( value != 0.0 );
+   };
+   auto reduce = [] __cuda_callable__ ( IndexType& aux, const IndexType a ) {
+      aux += a;
+   };
+   auto keep = [=] __cuda_callable__ ( const IndexType rowIdx, const IndexType value ) mutable {
+      rowLengths_view[ rowIdx ] = value;
+   };
+   m.allRowsReduction( fetch, reduce, keep, 0 );
+   EXPECT_EQ( rowsCapacities, rowLengths );
+
+   ////
+   // Compute max norm
+   TNL::Containers::Vector< RealType, DeviceType, IndexType > rowSums( rows );
+   auto rowSums_view = rowSums.getView();
+   auto max_fetch = [] __cuda_callable__ ( IndexType row, IndexType column, const RealType& value ) -> IndexType {
+      return abs( value );
+   };
+   auto max_reduce = [] __cuda_callable__ ( IndexType& aux, const IndexType a ) {
+      aux += a;
+   };
+   auto max_keep = [=] __cuda_callable__ ( const IndexType rowIdx, const IndexType value ) mutable {
+      rowSums_view[ rowIdx ] = value;
+   };
+   m.allRowsReduction( max_fetch, max_reduce, max_keep, 0 );
+   const RealType maxNorm = TNL::max( rowSums );
+   EXPECT_EQ( maxNorm, 260 ) ; // 29+30+31+32+33+34+35+36
+}
+
 template< typename Matrix >
 void test_PerformSORIteration()
 {
diff --git a/src/UnitTests/Matrices/SparseMatrixTest_CSR_segments.h b/src/UnitTests/Matrices/SparseMatrixTest_CSR_segments.h
index bf4e452fa1af77388efb1ba2da76b5843d04e067..0718e3a69a8978d322288d9ee65ec1a471b6ee22 100644
--- a/src/UnitTests/Matrices/SparseMatrixTest_CSR_segments.h
+++ b/src/UnitTests/Matrices/SparseMatrixTest_CSR_segments.h
@@ -122,6 +122,13 @@ TYPED_TEST( CSRMatrixTest, vectorProductTest )
     test_VectorProduct< CSRMatrixType >();
 }
 
+TYPED_TEST( CSRMatrixTest, rowsReduction )
+{
+    using CSRMatrixType = typename TestFixture::CSRMatrixType;
+
+    test_RowsReduction< CSRMatrixType >();
+}
+
 TYPED_TEST( CSRMatrixTest, saveAndLoadTest )
 {
     using CSRMatrixType = typename TestFixture::CSRMatrixType;
diff --git a/src/UnitTests/Matrices/SparseMatrixTest_Ellpack_segments.h b/src/UnitTests/Matrices/SparseMatrixTest_Ellpack_segments.h
index edfe0bc2839383a08c9fa65bd69c0c733753abab..2c0514c0aba69e5e26abdf1434b7a2d333c25b63 100644
--- a/src/UnitTests/Matrices/SparseMatrixTest_Ellpack_segments.h
+++ b/src/UnitTests/Matrices/SparseMatrixTest_Ellpack_segments.h
@@ -133,6 +133,13 @@ TYPED_TEST( EllpackMatrixTest, vectorProductTest )
     test_VectorProduct< EllpackMatrixType >();
 }
 
+TYPED_TEST( EllpackMatrixTest, rowsReduction )
+{
+    using EllpackMatrixType = typename TestFixture::EllpackMatrixType;
+
+    test_RowsReduction< EllpackMatrixType >();
+}
+
 TYPED_TEST( EllpackMatrixTest, saveAndLoadTest )
 {
     using EllpackMatrixType = typename TestFixture::EllpackMatrixType;
diff --git a/src/UnitTests/Matrices/SparseMatrixTest_SlicedEllpack_segments.h b/src/UnitTests/Matrices/SparseMatrixTest_SlicedEllpack_segments.h
index 8d17b8be7a4fed6e14c97e3848e891ef1bbd4e19..5efcb1eae0a01e9d4267c8e07cdcd396ecb1015e 100644
--- a/src/UnitTests/Matrices/SparseMatrixTest_SlicedEllpack_segments.h
+++ b/src/UnitTests/Matrices/SparseMatrixTest_SlicedEllpack_segments.h
@@ -133,6 +133,13 @@ TYPED_TEST( SlicedEllpackMatrixTest, vectorProductTest )
     test_VectorProduct< SlicedEllpackMatrixType >();
 }
 
+TYPED_TEST( SlicedEllpackMatrixTest, rowsReduction )
+{
+    using SlicedEllpackMatrixType = typename TestFixture::SlicedEllpackMatrixType;
+
+    test_RowsReduction< SlicedEllpackMatrixType >();
+}
+
 TYPED_TEST( SlicedEllpackMatrixTest, saveAndLoadTest )
 {
     using SlicedEllpackMatrixType = typename TestFixture::SlicedEllpackMatrixType;