From bb234945233bf2f929440f62e3d9643c61ad8d1e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Tom=C3=A1=C5=A1=20Oberhuber?= <oberhuber.tomas@gmail.com> Date: Tue, 21 Jan 2020 22:17:46 +0100 Subject: [PATCH] Implementing dense matrix assignment. --- src/TNL/Matrices/Dense.h | 27 ++- src/TNL/Matrices/Dense.hpp | 220 ++++++++++++------- src/TNL/Matrices/Multidiagonal.h | 3 + src/TNL/Matrices/Multidiagonal.hpp | 14 ++ src/TNL/Matrices/MultidiagonalMatrixView.h | 3 + src/TNL/Matrices/MultidiagonalMatrixView.hpp | 16 +- src/TNL/Matrices/Tridiagonal.h | 3 + src/TNL/Matrices/Tridiagonal.hpp | 16 +- src/TNL/Matrices/TridiagonalMatrixView.h | 3 + src/TNL/Matrices/TridiagonalMatrixView.hpp | 16 +- src/UnitTests/Matrices/DenseMatrixCopyTest.h | 52 +++-- 11 files changed, 276 insertions(+), 97 deletions(-) diff --git a/src/TNL/Matrices/Dense.h b/src/TNL/Matrices/Dense.h index 2e71316e94..8c109ac1e3 100644 --- a/src/TNL/Matrices/Dense.h +++ b/src/TNL/Matrices/Dense.h @@ -167,12 +167,31 @@ class Dense : public Matrix< Real, Device, Index > Vector2& x, const RealType& omega = 1.0 ) const; - // copy assignment + /** + * \brief Assignment operator for exactly the same type of the dense matrix. + * + * @param matrix + * @return + */ Dense& operator=( const Dense& matrix ); - // cross-device copy assignment - template< typename Real_, typename Device_, typename Index_, bool RowMajorOrder_, typename RealAlocator_ > - Dense& operator=( const Dense< Real_, Device_, Index_, RowMajorOrder_, RealAlocator_ >& matrix ); + /** + * \brief Assignment operator for other dense matrices. + * + * @param matrix + * @return + */ + template< typename RHSReal, typename RHSDevice, typename RHSIndex, + bool RHSRowMajorOrder, typename RHSRealAllocator > + Dense& operator=( const Dense< RHSReal, RHSDevice, RHSIndex, RHSRowMajorOrder, RHSRealAllocator >& matrix ); + + /** + * \brief Assignment operator for other (sparse) types of matrices. + * @param matrix + * @return + */ + template< typename RHSMatrix > + Dense& operator=( const RHSMatrix& matrix ); template< typename Real_, typename Device_, typename Index_, typename RealAllocator_ > bool operator==( const Dense< Real_, Device_, Index_, RowMajorOrder >& matrix ) const; diff --git a/src/TNL/Matrices/Dense.hpp b/src/TNL/Matrices/Dense.hpp index 3d9ff102ed..e1acfee67e 100644 --- a/src/TNL/Matrices/Dense.hpp +++ b/src/TNL/Matrices/Dense.hpp @@ -118,7 +118,7 @@ void Dense< Real, Device, Index, RowMajorOrder, RealAllocator >:: setLike( const Matrix_& matrix ) { - Matrix< Real, Device, Index, RealAllocator >::setLike( matrix ); + this->setDimensions( matrix.getRows(), matrix.getColumns() ); } template< typename Real, @@ -896,39 +896,81 @@ operator=( const Dense< Real, Device, Index, RowMajorOrder, RealAllocator >& mat { setLike( matrix ); this->values = matrix.values; - /*const IndexType bufferRowsCount( 128 ); - const IndexType columns = this->getColumns(); - const size_t bufferSize = bufferRowsCount * columns; - Containers::Vector< RealType, Device, IndexType, RealAllocatorType > sourceValuesBuffer( bufferSize ); - Containers::Vector< RealType, DeviceType, IndexType, RealAllocatorType > destinationValuesBuffer( bufferSize ); - auto sourceValuesBuffer_view = sourceValuesBuffer.getView(); - auto destinationValuesBuffer_view = destinationValuesBuffer.getView(); - - IndexType baseRow( 0 ); - const IndexType rowsCount = this->getRows(); - while( baseRow < rowsCount ) + return *this; +} + +template< typename Real, + typename Device, + typename Index, + bool RowMajorOrder, + typename RealAllocator > + template< typename RHSReal, typename RHSDevice, typename RHSIndex, + bool RHSRowMajorOrder, typename RHSRealAllocator > +Dense< Real, Device, Index, RowMajorOrder, RealAllocator >& +Dense< Real, Device, Index, RowMajorOrder, RealAllocator >:: +operator=( const Dense< RHSReal, RHSDevice, RHSIndex, RHSRowMajorOrder, RHSRealAllocator >& matrix ) +{ + using RHSMatrix = Dense< RHSReal, RHSDevice, RHSIndex, RHSRowMajorOrder, RHSRealAllocator >; + using RHSIndexType = typename RHSMatrix::IndexType; + using RHSRealType = typename RHSMatrix::RealType; + using RHSDeviceType = typename RHSMatrix::DeviceType; + + this->setLike( matrix ); + if( RowMajorOrder == RHSRowMajorOrder ) { - const IndexType lastRow = min( baseRow + bufferRowsCount, rowsCount ); + this->values = matrix.values; + return *this; + } - //// - // Copy matrix elements into buffer - auto f1 = [=] __cuda_callable__ ( Index rowIdx, Index columnIdx, Index globalIdx, const Real& value ) mutable { - const IndexType bufferIdx = ( rowIdx - baseRow ) * columns + columnIdx; - sourceValuesBuffer_view[ bufferIdx ] = value; - }; - matrix.forRows( baseRow, lastRow, f1 ); - destinationValuesBuffer = sourceValuesBuffer; - - //// - // Copy buffer to this matrix - auto f2 = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, IndexType globalIdx, RealType& value ) mutable { - const IndexType bufferIdx = ( rowIdx - baseRow ) * columns + columnIdx; - value = destinationValuesBuffer_view[ bufferIdx ]; + auto this_view = this->view; + if( std::is_same< DeviceType, RHSDeviceType >::value ) + { + const auto segments_view = this->segments.getView(); + auto f = [=] __cuda_callable__ ( RHSIndexType rowIdx, RHSIndexType localIdx, RHSIndexType columnIdx, const RHSRealType& value, bool& compute ) mutable { + this_view( rowIdx, columnIdx ) = value; }; - this->forRows( baseRow, lastRow, f2 ); - baseRow += bufferRowsCount; + matrix.forAllRows( f ); } - return *this;*/ + else + { + const IndexType maxRowLength = matrix.getColumns(); + const IndexType bufferRowsCount( 128 ); + const size_t bufferSize = bufferRowsCount * maxRowLength; + Containers::Vector< RHSRealType, RHSDeviceType, RHSIndexType > matrixValuesBuffer( bufferSize ); + Containers::Vector< RealType, DeviceType, IndexType > thisValuesBuffer( bufferSize ); + auto matrixValuesBuffer_view = matrixValuesBuffer.getView(); + auto thisValuesBuffer_view = thisValuesBuffer.getView(); + + IndexType baseRow( 0 ); + const IndexType rowsCount = this->getRows(); + while( baseRow < rowsCount ) + { + const IndexType lastRow = min( baseRow + bufferRowsCount, rowsCount ); + + //// + // Copy matrix elements into buffer + auto f1 = [=] __cuda_callable__ ( RHSIndexType rowIdx, RHSIndexType localIdx, RHSIndexType columnIdx, const RHSRealType& value, bool& compute ) mutable { + const IndexType bufferIdx = ( rowIdx - baseRow ) * maxRowLength + columnIdx; + matrixValuesBuffer_view[ bufferIdx ] = value; + }; + matrix.forRows( baseRow, lastRow, f1 ); + + //// + // Copy the source matrix buffer to this matrix buffer + thisValuesBuffer_view = matrixValuesBuffer_view; + + //// + // Copy matrix elements from the buffer to the matrix. + auto this_view = this->view; + auto f2 = [=] __cuda_callable__ ( IndexType columnIdx, IndexType bufferRowIdx ) mutable { + IndexType bufferIdx = bufferRowIdx * maxRowLength + columnIdx; + this_view( baseRow + bufferRowIdx, columnIdx ) = thisValuesBuffer_view[ bufferIdx ]; + }; + Algorithms::ParallelFor2D< DeviceType >::exec( ( IndexType ) 0, ( IndexType ) 0, ( IndexType ) maxRowLength, ( IndexType ) min( bufferRowsCount, this->getRows() - baseRow ), f2 ); + baseRow += bufferRowsCount; + } + } + return *this; } template< typename Real, @@ -936,59 +978,85 @@ template< typename Real, typename Index, bool RowMajorOrder, typename RealAllocator > - template< typename Real_, typename Device_, typename Index_, bool RowMajorOrder_, typename RealAllocator_ > + template< typename RHSMatrix > Dense< Real, Device, Index, RowMajorOrder, RealAllocator >& Dense< Real, Device, Index, RowMajorOrder, RealAllocator >:: -operator=( const Dense< Real_, Device_, Index_, RowMajorOrder_, RealAllocator_ >& matrix ) +operator=( const RHSMatrix& matrix ) { - this->setLike( matrix ); - if( RowMajorOrder == RowMajorOrder_ ) - this->values = matrix.getValues(); + using RHSIndexType = typename RHSMatrix::IndexType; + using RHSRealType = typename RHSMatrix::RealType; + using RHSDeviceType = typename RHSMatrix::DeviceType; + using RHSRealAllocatorType = typename RHSMatrix::RealAllocatorType; + + Containers::Vector< RHSIndexType, RHSDeviceType, RHSIndexType > rowLengths; + matrix.getCompressedRowLengths( rowLengths ); + this->setDimensions( matrix.getRows(), matrix.getColumns() ); + + // TODO: use getConstView when it works + const auto matrixView = const_cast< RHSMatrix& >( matrix ).getView(); + auto values_view = this->values.getView(); + RHSIndexType padding_index = matrix.getPaddingIndex(); + this->values = 0.0; + + if( std::is_same< DeviceType, RHSDeviceType >::value ) + { + const auto segments_view = this->segments.getView(); + auto f = [=] __cuda_callable__ ( RHSIndexType rowIdx, RHSIndexType localIdx_, RHSIndexType columnIdx, const RHSRealType& value, bool& compute ) mutable { + if( value != 0.0 && columnIdx != padding_index ) + values_view[ segments_view.getGlobalIndex( rowIdx, columnIdx ) ] = value; + }; + matrix.forAllRows( f ); + } else { - if( std::is_same< DeviceType, Device_ >::value ) + const IndexType maxRowLength = max( rowLengths ); + const IndexType bufferRowsCount( 128 ); + const size_t bufferSize = bufferRowsCount * maxRowLength; + Containers::Vector< RHSRealType, RHSDeviceType, RHSIndexType, RHSRealAllocatorType > matrixValuesBuffer( bufferSize ); + Containers::Vector< RHSIndexType, RHSDeviceType, RHSIndexType > matrixColumnsBuffer( bufferSize ); + Containers::Vector< RealType, DeviceType, IndexType, RealAllocatorType > thisValuesBuffer( bufferSize ); + Containers::Vector< IndexType, DeviceType, IndexType > thisColumnsBuffer( bufferSize ); + auto matrixValuesBuffer_view = matrixValuesBuffer.getView(); + auto matrixColumnsBuffer_view = matrixColumnsBuffer.getView(); + auto thisValuesBuffer_view = thisValuesBuffer.getView(); + auto thisColumnsBuffer_view = thisColumnsBuffer.getView(); + + IndexType baseRow( 0 ); + const IndexType rowsCount = this->getRows(); + while( baseRow < rowsCount ) { - auto this_view = this->getView(); - auto f = [=] __cuda_callable__ ( Index_ rowIdx, Index_ columnIdx, Index_ globalIdx, const Real_& value, bool& compute ) mutable { - this_view.getRow( rowIdx ).setElement( columnIdx, value ); + const IndexType lastRow = min( baseRow + bufferRowsCount, rowsCount ); + thisColumnsBuffer = padding_index; + matrixColumnsBuffer_view = padding_index; + + //// + // Copy matrix elements into buffer + auto f1 = [=] __cuda_callable__ ( RHSIndexType rowIdx, RHSIndexType localIdx, RHSIndexType columnIndex, const RHSRealType& value, bool& compute ) mutable { + if( columnIndex != padding_index ) + { + const IndexType bufferIdx = ( rowIdx - baseRow ) * maxRowLength + localIdx; + matrixColumnsBuffer_view[ bufferIdx ] = columnIndex; + matrixValuesBuffer_view[ bufferIdx ] = value; + } }; - matrix.forAllRows( f ); - } - else - { - const IndexType bufferRowsCount( 128 ); - const IndexType columns = this->getColumns(); - const size_t bufferSize = bufferRowsCount * columns; - Containers::Vector< RealType, Device_, IndexType, RealAllocator_ > sourceValuesBuffer( bufferSize ); - Containers::Vector< RealType, DeviceType, IndexType, RealAllocatorType > destinationValuesBuffer( bufferSize ); - auto sourceValuesBuffer_view = sourceValuesBuffer.getView(); - auto destinationValuesBuffer_view = destinationValuesBuffer.getView(); - - IndexType baseRow( 0 ); - const IndexType rowsCount = this->getRows(); - while( baseRow < rowsCount ) - { - const IndexType lastRow = min( baseRow + bufferRowsCount, rowsCount ); - - //// - // Copy matrix elements into buffer - auto f1 = [=] __cuda_callable__ ( Index_ rowIdx, Index_ columnIdx, Index_ globalIdx, const Real_& value, bool& compute ) mutable { - const IndexType bufferIdx = ( rowIdx - baseRow ) * columns + columnIdx; - sourceValuesBuffer_view[ bufferIdx ] = value; - }; - matrix.forRows( baseRow, lastRow, f1 ); - - destinationValuesBuffer = sourceValuesBuffer; - - //// - // Copy buffer to this matrix - auto f2 = [=] __cuda_callable__ ( IndexType rowIdx, IndexType columnIdx, IndexType globalIdx, RealType& value, bool& compute ) mutable { - const IndexType bufferIdx = ( rowIdx - baseRow ) * columns + columnIdx; - value = destinationValuesBuffer_view[ bufferIdx ]; - }; - this->forRows( baseRow, lastRow, f2 ); - baseRow += bufferRowsCount; - } + matrix.forRows( baseRow, lastRow, f1 ); + + //// + // Copy the source matrix buffer to this matrix buffer + thisValuesBuffer_view = matrixValuesBuffer_view; + thisColumnsBuffer_view = matrixColumnsBuffer_view; + + //// + // Copy matrix elements from the buffer to the matrix + auto this_view = this->view; + auto f2 = [=] __cuda_callable__ ( IndexType bufferColumnIdx, IndexType bufferRowIdx ) mutable { + IndexType bufferIdx = bufferRowIdx * maxRowLength + bufferColumnIdx; + IndexType columnIdx = thisColumnsBuffer_view[ bufferIdx ]; + if( columnIdx != padding_index ) + this_view( baseRow + bufferRowIdx, columnIdx ) = thisValuesBuffer_view[ bufferIdx ]; + }; + Algorithms::ParallelFor2D< DeviceType >::exec( ( IndexType ) 0, ( IndexType ) 0, ( IndexType ) maxRowLength, ( IndexType ) min( bufferRowsCount, this->getRows() - baseRow ), f2 ); + baseRow += bufferRowsCount; } } this->view = this->getView(); diff --git a/src/TNL/Matrices/Multidiagonal.h b/src/TNL/Matrices/Multidiagonal.h index 9e5f922959..927e524491 100644 --- a/src/TNL/Matrices/Multidiagonal.h +++ b/src/TNL/Matrices/Multidiagonal.h @@ -201,6 +201,9 @@ class Multidiagonal : public Matrix< Real, Device, Index, RealAllocator > IndexerType& getIndexer(); + __cuda_callable__ + IndexType getPaddingIndex() const; + protected: __cuda_callable__ diff --git a/src/TNL/Matrices/Multidiagonal.hpp b/src/TNL/Matrices/Multidiagonal.hpp index 94470d3d1c..5d83004f29 100644 --- a/src/TNL/Matrices/Multidiagonal.hpp +++ b/src/TNL/Matrices/Multidiagonal.hpp @@ -830,6 +830,20 @@ getElementIndex( const IndexType row, const IndexType column ) const return this->indexer.getGlobalIndex( row, localIdx ); } +template< typename Real, + typename Device, + typename Index, + bool RowMajorOrder, + typename RealAllocator, + typename IndexAllocator > +__cuda_callable__ +Index +Multidiagonal< Real, Device, Index, RowMajorOrder, RealAllocator, IndexAllocator >:: +getPaddingIndex() const +{ + return this->view.getPaddingIndex(); +} + /* template<> class MultidiagonalDeviceDependentCode< Devices::Host > diff --git a/src/TNL/Matrices/MultidiagonalMatrixView.h b/src/TNL/Matrices/MultidiagonalMatrixView.h index 1e5a9bd28e..f623a3ca66 100644 --- a/src/TNL/Matrices/MultidiagonalMatrixView.h +++ b/src/TNL/Matrices/MultidiagonalMatrixView.h @@ -163,6 +163,9 @@ class MultidiagonalMatrixView : public MatrixView< Real, Device, Index > __cuda_callable__ IndexerType& getIndexer(); + __cuda_callable__ + IndexType getPaddingIndex() const; + protected: __cuda_callable__ diff --git a/src/TNL/Matrices/MultidiagonalMatrixView.hpp b/src/TNL/Matrices/MultidiagonalMatrixView.hpp index 2243684654..f35c6d713f 100644 --- a/src/TNL/Matrices/MultidiagonalMatrixView.hpp +++ b/src/TNL/Matrices/MultidiagonalMatrixView.hpp @@ -713,11 +713,25 @@ template< typename Real, typename Index, bool RowMajorOrder > __cuda_callable__ -Index MultidiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: +Index +MultidiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: getElementIndex( const IndexType row, const IndexType localIdx ) const { return this->indexer.getGlobalIndex( row, localIdx ); } +template< typename Real, + typename Device, + typename Index, + bool RowMajorOrder > +__cuda_callable__ +Index +MultidiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: +getPaddingIndex() const +{ + return -1; +} + + } // namespace Matrices } // namespace TNL diff --git a/src/TNL/Matrices/Tridiagonal.h b/src/TNL/Matrices/Tridiagonal.h index 82549e7445..3f89023106 100644 --- a/src/TNL/Matrices/Tridiagonal.h +++ b/src/TNL/Matrices/Tridiagonal.h @@ -174,6 +174,9 @@ class Tridiagonal : public Matrix< Real, Device, Index, RealAllocator > IndexerType& getIndexer(); + __cuda_callable__ + IndexType getPaddingIndex() const; + protected: __cuda_callable__ diff --git a/src/TNL/Matrices/Tridiagonal.hpp b/src/TNL/Matrices/Tridiagonal.hpp index 8f4f4e190b..d99715a47c 100644 --- a/src/TNL/Matrices/Tridiagonal.hpp +++ b/src/TNL/Matrices/Tridiagonal.hpp @@ -678,7 +678,8 @@ template< typename Real, bool RowMajorOrder, typename RealAllocator > __cuda_callable__ -Index Tridiagonal< Real, Device, Index, RowMajorOrder, RealAllocator >:: +Index +Tridiagonal< Real, Device, Index, RowMajorOrder, RealAllocator >:: getElementIndex( const IndexType row, const IndexType column ) const { IndexType localIdx = column - row; @@ -691,6 +692,19 @@ getElementIndex( const IndexType row, const IndexType column ) const return this->indexer.getGlobalIndex( row, localIdx ); } +template< typename Real, + typename Device, + typename Index, + bool RowMajorOrder, + typename RealAllocator > +__cuda_callable__ +Index +Tridiagonal< Real, Device, Index, RowMajorOrder, RealAllocator >:: +getPaddingIndex() const +{ + return this->view.getPaddingIndex(); +} + /* template<> class TridiagonalDeviceDependentCode< Devices::Host > diff --git a/src/TNL/Matrices/TridiagonalMatrixView.h b/src/TNL/Matrices/TridiagonalMatrixView.h index 61b005c5a7..82b76c73f7 100644 --- a/src/TNL/Matrices/TridiagonalMatrixView.h +++ b/src/TNL/Matrices/TridiagonalMatrixView.h @@ -151,6 +151,9 @@ class TridiagonalMatrixView : public MatrixView< Real, Device, Index > __cuda_callable__ IndexerType& getIndexer(); + __cuda_callable__ + IndexType getPaddingIndex() const; + protected: __cuda_callable__ diff --git a/src/TNL/Matrices/TridiagonalMatrixView.hpp b/src/TNL/Matrices/TridiagonalMatrixView.hpp index 7fc5fd6b7b..6e293ffd03 100644 --- a/src/TNL/Matrices/TridiagonalMatrixView.hpp +++ b/src/TNL/Matrices/TridiagonalMatrixView.hpp @@ -675,7 +675,8 @@ template< typename Real, typename Index, bool RowMajorOrder > __cuda_callable__ -Index TridiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: +Index +TridiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: getElementIndex( const IndexType row, const IndexType column ) const { IndexType localIdx = column - row; @@ -688,5 +689,18 @@ getElementIndex( const IndexType row, const IndexType column ) const return this->indexer.getGlobalIndex( row, localIdx ); } +template< typename Real, + typename Device, + typename Index, + bool RowMajorOrder > +__cuda_callable__ +Index +TridiagonalMatrixView< Real, Device, Index, RowMajorOrder >:: +getPaddingIndex() const +{ + return -1; +} + + } // namespace Matrices } // namespace TNL diff --git a/src/UnitTests/Matrices/DenseMatrixCopyTest.h b/src/UnitTests/Matrices/DenseMatrixCopyTest.h index ef7809a6b5..3ef31f1075 100644 --- a/src/UnitTests/Matrices/DenseMatrixCopyTest.h +++ b/src/UnitTests/Matrices/DenseMatrixCopyTest.h @@ -59,9 +59,20 @@ using Dense_cuda_RowMajorOrder = TNL::Matrices::Dense< int, TNL::Devices::Cuda, template< typename Matrix > void setupUnevenRowSizeMatrix( Matrix& m ) { - const int rows = 10; - const int cols = 6; - m.setDimensions( rows, cols ); + const int rows = 10; + const int cols = 6; + m.setDimensions( rows, cols ); + typename Matrix::CompressedRowLengthsVector rowLengths; + rowLengths.setSize( rows ); + rowLengths.setValue( 5 ); + rowLengths.setElement( 0, 2 ); + rowLengths.setElement( 1, 3 ); + rowLengths.setElement( 2, 3 ); + rowLengths.setElement( 5, 2 ); + rowLengths.setElement( 6, 1 ); + rowLengths.setElement( 7, 1 ); + rowLengths.setElement( 9, 1 ); + m.setCompressedRowLengths( rowLengths ); int value = 1; for( int i = 0; i < cols - 4; i++ ) // 0th row @@ -183,15 +194,21 @@ void checkUnevenRowSizeMatrix( Matrix& m ) template< typename Matrix > void setupAntiTriDiagMatrix( Matrix& m ) { - const int rows = 7; - const int cols = 6; - m.setDimensions( rows, cols ); + const int rows = 7; + const int cols = 6; + m.setDimensions( rows, cols ); + typename Matrix::CompressedRowLengthsVector rowLengths; + rowLengths.setSize( rows ); + rowLengths.setValue( 3 ); + rowLengths.setElement( 0, 4); + rowLengths.setElement( 1, 4 ); + m.setCompressedRowLengths( rowLengths ); - int value = 1; - for( int i = 0; i < rows; i++ ) - for( int j = cols - 1; j > 2; j-- ) - if( j - i + 1 < cols && j - i + 1 >= 0 ) - m.setElement( i, j - i + 1, value++ ); + int value = 1; + for( int i = 0; i < rows; i++ ) + for( int j = cols - 1; j > 2; j-- ) + if( j - i + 1 < cols && j - i + 1 >= 0 ) + m.setElement( i, j - i + 1, value++ ); } template< typename Matrix > @@ -267,6 +284,13 @@ void setupTriDiagMatrix( Matrix& m ) const int rows = 7; const int cols = 6; m.setDimensions( rows, cols ); + typename Matrix::CompressedRowLengthsVector rowLengths; + rowLengths.setSize( rows ); + rowLengths.setValue( 3 ); + rowLengths.setElement( 0 , 4 ); + rowLengths.setElement( 1, 4 ); + m.setCompressedRowLengths( rowLengths ); + int value = 1; for( int i = 0; i < rows; i++ ) @@ -387,7 +411,7 @@ void tridiagonalMatrixAssignment() Matrix matrix; matrix = hostMatrix; - using RowCapacitiesType = typename Matrix::RowsCapacitiesType; + using RowCapacitiesType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >; RowCapacitiesType rowCapacities; matrix.getCompressedRowLengths( rowCapacities ); RowCapacitiesType exactRowLengths{ 1, 3, 3, 3, 3, 3, 3, 3, 3, 2 }; @@ -439,7 +463,7 @@ void multidiagonalMatrixAssignment() Matrix matrix; matrix = hostMatrix; - using RowCapacitiesType = typename Matrix::RowsCapacitiesType; + using RowCapacitiesType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >; RowCapacitiesType rowCapacities; matrix.getCompressedRowLengths( rowCapacities ); RowCapacitiesType exactRowLengths{ 3, 4, 5, 5, 6, 5, 5, 4, 4, 3 }; @@ -488,7 +512,7 @@ void denseMatrixAssignment() Matrix matrix; matrix = hostMatrix; - using RowCapacitiesType = typename Matrix::RowsCapacitiesType; + using RowCapacitiesType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >; RowCapacitiesType rowCapacities; matrix.getCompressedRowLengths( rowCapacities ); RowCapacitiesType exactRowLengths{ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; -- GitLab