/*************************************************************************** spmv.h - description ------------------- begin : Dec 30, 2018 copyright : (C) 2015 by Tomas Oberhuber et al. email : tomas.oberhuber@fjfi.cvut.cz ***************************************************************************/ /* See Copyright Notice in tnl/Copyright */ // Implemented by: Lukas Cejka // Original implemented by J. Klinkovsky in Benchmarks/BLAS // This is an edited copy of Benchmarks/BLAS/spmv.h by: Lukas Cejka #pragma once #include "../Benchmarks.h" #include <TNL/Pointers/DevicePointer.h> #include <TNL/Matrices/Legacy/CSR.h> #include <TNL/Matrices/Legacy/Ellpack.h> #include <TNL/Matrices/Legacy/SlicedEllpack.h> #include <TNL/Matrices/Legacy/ChunkedEllpack.h> #include <TNL/Matrices/Legacy/AdEllpack.h> #include <TNL/Matrices/Legacy/BiEllpack.h> #include <TNL/Matrices/MatrixReader.h> #include <TNL/Matrices/MatrixInfo.h> #include <TNL/Matrices/SparseMatrix.h> #include <TNL/Matrices/MatrixType.h> #include <TNL/Containers/Segments/CSR.h> #include <TNL/Containers/Segments/Ellpack.h> #include <TNL/Containers/Segments/SlicedEllpack.h> using namespace TNL::Matrices; #include "cusparseCSRMatrix.h" namespace TNL { namespace Benchmarks { // Alias to match the number of template parameters with other formats template< typename Real, typename Device, typename Index > using SlicedEllpackAlias = Matrices::SlicedEllpack< Real, Device, Index >; // Segments based sparse matrix aliases template< typename Real, typename Device, typename Index > using SparseMatrix_CSR = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, Containers::Segments::CSR >; template< typename Device, typename Index, typename IndexAllocator > using EllpackSegments = Containers::Segments::Ellpack< Device, Index, IndexAllocator >; template< typename Real, typename Device, typename Index > using SparseMatrix_Ellpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, EllpackSegments >; template< typename Device, typename Index, typename IndexAllocator > using SlicedEllpackSegments = Containers::Segments::SlicedEllpack< Device, Index, IndexAllocator >; template< typename Real, typename Device, typename Index > using SparseMatrix_SlicedEllpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, SlicedEllpackSegments >; // Get the name (with extension) of input matrix file std::string getMatrixFileName( const String& InputFileName ) { std::string fileName = InputFileName; const size_t last_slash_idx = fileName.find_last_of( "/\\" ); if( std::string::npos != last_slash_idx ) fileName.erase( 0, last_slash_idx + 1 ); return fileName; } // Get only the name of the format from getType() template< typename Matrix > std::string getMatrixFormat( const Matrix& matrix ) { std::string mtrxFullType = getType( matrix ); std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) ); std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 ); return format; } template< typename Matrix > std::string getFormatShort( const Matrix& matrix ) { std::string mtrxFullType = getType( matrix ); std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) ); std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 ); format = format.substr( format.find(':') + 2); format = format.substr( 0, 3 ); return format; } // Print information about the matrix. template< typename Matrix > void printMatrixInfo( const Matrix& matrix, std::ostream& str ) { str << "\n Format: " << getMatrixFormat( matrix ) << std::endl; str << " Rows: " << matrix.getRows() << std::endl; str << " Cols: " << matrix.getColumns() << std::endl; str << " Nonzero Elements: " << matrix.getNumberOfNonzeroMatrixElements() << std::endl; } template< typename Real, template< typename, typename, typename > class Matrix, template< typename, typename, typename, typename > class Vector = Containers::Vector > void benchmarkSpMV( Benchmark& benchmark, const String& inputFileName, bool verboseMR ) { // Setup CSR for cuSPARSE. It will compared to the format given as a template parameter to this function typedef Matrices::CSR< Real, Devices::Host, int > CSR_HostMatrix; typedef Matrices::CSR< Real, Devices::Cuda, int > CSR_DeviceMatrix; CSR_HostMatrix CSRhostMatrix; CSR_DeviceMatrix CSRdeviceMatrix; // Read the matrix for CSR, to set up cuSPARSE MatrixReader< CSR_HostMatrix >::readMtxFile( inputFileName, CSRhostMatrix, verboseMR ); #ifdef HAVE_CUDA // cuSPARSE handle setup cusparseHandle_t cusparseHandle; cusparseCreate( &cusparseHandle ); // cuSPARSE (in TNL's CSR) only works for device, copy the matrix from host to device CSRdeviceMatrix = CSRhostMatrix; // Delete the CSRhostMatrix, so it doesn't take up unnecessary space CSRhostMatrix.reset(); // Initialize the cusparseCSR matrix. TNL::CusparseCSR< Real > cusparseCSR; cusparseCSR.init( CSRdeviceMatrix, &cusparseHandle ); #endif // Setup the format which is given as a template parameter to this function typedef Matrix< Real, Devices::Host, int > HostMatrix; typedef Matrix< Real, Devices::Cuda, int > DeviceMatrix; typedef Containers::Vector< Real, Devices::Host, int > HostVector; typedef Containers::Vector< Real, Devices::Cuda, int > CudaVector; HostMatrix hostMatrix; DeviceMatrix deviceMatrix; HostVector hostVector, hostVector2; CudaVector deviceVector, deviceVector2; // Load the format MatrixReader< HostMatrix >::readMtxFile( inputFileName, hostMatrix, verboseMR ); // Setup MetaData here (not in tnl-benchmark-spmv.h, as done in Benchmarks/BLAS), // because we need the matrix loaded first to get the rows and columns benchmark.setMetadataColumns( Benchmark::MetadataColumns({ { "matrix name", convertToString( getMatrixFileName( inputFileName ) ) }, { "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) }, { "rows", convertToString( hostMatrix.getRows() ) }, { "columns", convertToString( hostMatrix.getColumns() ) }, { "matrix format", MatrixInfo< HostMatrix >::getFormat() } //convertToString( getType( hostMatrix ) ) } } )); hostVector.setSize( hostMatrix.getColumns() ); hostVector2.setSize( hostMatrix.getRows() ); #ifdef HAVE_CUDA deviceMatrix = hostMatrix; deviceVector.setSize( hostMatrix.getColumns() ); deviceVector2.setSize( hostMatrix.getRows() ); #endif // reset function auto reset = [&]() { hostVector.setValue( 1.0 ); hostVector2.setValue( 0.0 ); #ifdef HAVE_CUDA deviceVector.setValue( 1.0 ); deviceVector2.setValue( 0.0 ); #endif }; const int elements = hostMatrix.getNumberOfNonzeroMatrixElements(); const double datasetSize = (double) elements * ( 2 * sizeof( Real ) + sizeof( int ) ) / oneGB; // compute functions auto spmvHost = [&]() { hostMatrix.vectorProduct( hostVector, hostVector2 ); }; #ifdef HAVE_CUDA auto spmvCuda = [&]() { deviceMatrix.vectorProduct( deviceVector, deviceVector2 ); }; auto spmvCusparse = [&]() { cusparseCSR.vectorProduct( deviceVector, deviceVector2 ); }; #endif benchmark.setOperation( datasetSize ); benchmark.time< Devices::Host >( reset, "CPU", spmvHost ); // Initialize the host vector to be compared. // (The values in hostVector2 will be reset when spmvCuda starts) HostVector resultHostVector2; resultHostVector2.setSize( hostVector2.getSize() ); resultHostVector2.setValue( 0.0 ); // Copy the values resultHostVector2 = hostVector2; #ifdef HAVE_CUDA benchmark.time< Devices::Cuda >( reset, "GPU", spmvCuda ); // Initialize the device vector to be compared. // (The values in deviceVector2 will be reset when spmvCusparse starts) HostVector resultDeviceVector2; resultDeviceVector2.setSize( deviceVector2.getSize() ); resultDeviceVector2.setValue( 0.0 ); resultDeviceVector2 = deviceVector2; // Setup cuSPARSE MetaData, since it has the same header as CSR, // and therefore will not get its own headers (rows, cols, speedup etc.) in log. // * Not setting this up causes (among other undiscovered errors) the speedup from CPU to GPU on the input format to be overwritten. benchmark.setMetadataColumns( Benchmark::MetadataColumns({ { "matrix name", convertToString( getMatrixFileName( inputFileName ) ) }, { "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) }, { "rows", convertToString( hostMatrix.getRows() ) }, { "columns", convertToString( hostMatrix.getColumns() ) }, { "matrix format", convertToString( "CSR-cuSPARSE-" + getFormatShort( hostMatrix ) ) } } )); benchmark.time< Devices::Cuda >( reset, "GPU", spmvCusparse ); HostVector resultcuSPARSEDeviceVector2; resultcuSPARSEDeviceVector2.setSize( deviceVector2.getSize() ); resultcuSPARSEDeviceVector2.setValue( 0.0 ); resultcuSPARSEDeviceVector2 = deviceVector2; // Difference between GPU (current format) and GPU-cuSPARSE results //Real cuSparseDifferenceAbsMax = resultDeviceVector2.differenceAbsMax( resultcuSPARSEDeviceVector2 ); Real cuSparseDifferenceAbsMax = max( abs( resultDeviceVector2 - resultcuSPARSEDeviceVector2 ) ); //Real cuSparseDifferenceLpNorm = resultDeviceVector2.differenceLpNorm( resultcuSPARSEDeviceVector2, 1 ); Real cuSparseDifferenceLpNorm = lpNorm( resultDeviceVector2 - resultcuSPARSEDeviceVector2, 1 ); std::string GPUxGPUcuSparse_resultDifferenceAbsMax = "GPUxGPUcuSPARSE differenceAbsMax = " + std::to_string( cuSparseDifferenceAbsMax ); std::string GPUxGPUcuSparse_resultDifferenceLpNorm = "GPUxGPUcuSPARSE differenceLpNorm = " + std::to_string( cuSparseDifferenceLpNorm ); char *GPUcuSparse_absMax = &GPUxGPUcuSparse_resultDifferenceAbsMax[ 0u ]; char *GPUcuSparse_lpNorm = &GPUxGPUcuSparse_resultDifferenceLpNorm[ 0u ]; // Difference between CPU and GPU results for the current format //Real differenceAbsMax = resultHostVector2.differenceAbsMax( resultDeviceVector2 ); Real differenceAbsMax = max( abs( resultHostVector2 - resultDeviceVector2 ) ); //Real differenceLpNorm = resultHostVector2.differenceLpNorm( resultDeviceVector2, 1 ); Real differenceLpNorm = lpNorm( resultHostVector2 - resultDeviceVector2, 1 ); std::string CPUxGPU_resultDifferenceAbsMax = "CPUxGPU differenceAbsMax = " + std::to_string( differenceAbsMax ); std::string CPUxGPU_resultDifferenceLpNorm = "CPUxGPU differenceLpNorm = " + std::to_string( differenceLpNorm ); char *CPUxGPU_absMax = &CPUxGPU_resultDifferenceAbsMax[ 0u ]; char *CPUxGPU_lpNorm = &CPUxGPU_resultDifferenceLpNorm[ 0u ]; // Print result differences of CPU and GPU of current format std::cout << CPUxGPU_absMax << std::endl; std::cout << CPUxGPU_lpNorm << std::endl; // Print result differences of GPU of current format and GPU with cuSPARSE. std::cout << GPUcuSparse_absMax << std::endl; std::cout << GPUcuSparse_lpNorm << std::endl; #endif std::cout << std::endl; } template< typename Real = double, typename Index = int > void benchmarkSpmvSynthetic( Benchmark& benchmark, const String& inputFileName, bool verboseMR ) { benchmarkSpMV< Real, Matrices::CSR >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, SparseMatrix_CSR >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, Matrices::Ellpack >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, SparseMatrix_Ellpack >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, SlicedEllpackAlias >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, SparseMatrix_SlicedEllpack >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, Matrices::ChunkedEllpack >( benchmark, inputFileName, verboseMR ); benchmarkSpMV< Real, Matrices::BiEllpack >( benchmark, inputFileName, verboseMR ); //// // Segments based sparse matrices // // AdEllpack is broken // benchmarkSpMV< Real, Matrices::AdEllpack >( benchmark, inputFileName, verboseMR ); //benchmarkSpMV< Real, Matrices::BiEllpack >( benchmark, inputFileName, verboseMR ); } } // namespace Benchmarks } // namespace TNL