#ifndef LaxFridrichs_IMPL_H #define LaxFridrichs_IMPL_H namespace TNL { /**** * 1D problem */ template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > String LaxFridrichs< Meshes::Grid< 1, MeshReal, Device, MeshIndex >, Real, Index >:: getType() { return String( "LaxFridrichs< " ) + MeshType::getType() + ", " + TNL::getType< Real >() + ", " + TNL::getType< Index >() + " >"; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshFunction, typename MeshEntity > __cuda_callable__ Real LaxFridrichs< Meshes::Grid< 1, MeshReal, Device, MeshIndex >, Real, Index >:: operator()( const MeshFunction& u, const MeshEntity& entity, const Real& time ) const { /**** * Implement your explicit form of the differential operator here. * The following example is the Laplace operator approximated * by the Finite difference method. */ static_assert( MeshEntity::entityDimensions == 1, "Wrong mesh entity dimensions." ); static_assert( MeshFunction::getEntitiesDimensions() == 1, "Wrong preimage function" ); const typename MeshEntity::template NeighbourEntities< 1 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& hxInverse = entity.getMesh().template getSpaceStepsProducts< -1 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1 >(); double a; a = this->advectionSpeedX; return (0.5 / this->tau ) * this->artificalViscosity * ( u[ west ]- 2.0 * u[ center ] + u[ east ] ) - (a = this->advectionSpeedX * ( u[ east ] - u[west] ) ) * hxInverse * 0.5; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity > __cuda_callable__ Index LaxFridrichs< Meshes::Grid< 1, MeshReal, Device, MeshIndex >, Real, Index >:: getLinearSystemRowLength( const MeshType& mesh, const IndexType& index, const MeshEntity& entity ) const { /**** * Return a number of non-zero elements in a line (associated with given grid element) of * the linear system. * The following example is the Laplace operator approximated * by the Finite difference method. */ return 2*Dimensions + 1; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity, typename Vector, typename MatrixRow > __cuda_callable__ void LaxFridrichs< Meshes::Grid< 1, MeshReal, Device, MeshIndex >, Real, Index >:: updateLinearSystem( const RealType& time, const RealType& tau, const MeshType& mesh, const IndexType& index, const MeshEntity& entity, const MeshFunctionType& u, Vector& b, MatrixRow& matrixRow ) const { /**** * Setup the non-zero elements of the linear system here. * The following example is the Laplace operator appriximated * by the Finite difference method. */ const typename MeshEntity::template NeighbourEntities< 1 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& lambdaX = tau * entity.getMesh().template getSpaceStepsProducts< -2 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1 >(); matrixRow.setElement( 0, west, - lambdaX ); matrixRow.setElement( 1, center, 2.0 * lambdaX ); matrixRow.setElement( 2, east, - lambdaX ); } /**** * 2D problem */ template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > String LaxFridrichs< Meshes::Grid< 2, MeshReal, Device, MeshIndex >, Real, Index >:: getType() { return String( "LaxFridrichs< " ) + MeshType::getType() + ", " + TNL::getType< Real >() + ", " + TNL::getType< Index >() + " >"; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshFunction, typename MeshEntity > __cuda_callable__ Real LaxFridrichs< Meshes::Grid< 2, MeshReal, Device, MeshIndex >, Real, Index >:: operator()( const MeshFunction& u, const MeshEntity& entity, const Real& time ) const { /**** * Implement your explicit form of the differential operator here. * The following example is the Laplace operator approximated * by the Finite difference method. */ static_assert( MeshEntity::entityDimensions == 2, "Wrong mesh entity dimensions." ); static_assert( MeshFunction::getEntitiesDimensions() == 2, "Wrong preimage function" ); const typename MeshEntity::template NeighbourEntities< 2 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& hxInverse = entity.getMesh().template getSpaceStepsProducts< -1, 0 >(); const RealType& hyInverse = entity.getMesh().template getSpaceStepsProducts< 0, -1 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1, 0 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1, 0 >(); const IndexType& north = neighbourEntities.template getEntityIndex< 0, 1 >(); const IndexType& south = neighbourEntities.template getEntityIndex< 0, -1 >(); double a; double b; a = this->advectionSpeedX; b = this->advectionSpeedY; return ( 0.25 / this->tau ) * this->artificalViscosity * ( u[ west ] + u[ east ] + u[ south ] + u[ north ] - 4 * u[ center ] ) - (a * ( u[ east ] - u[west] ) ) * hxInverse * 0.5 - (b * ( u[ north ] - u[ south ] ) ) * hyInverse * 0.5; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity > __cuda_callable__ Index LaxFridrichs< Meshes::Grid< 2, MeshReal, Device, MeshIndex >, Real, Index >:: getLinearSystemRowLength( const MeshType& mesh, const IndexType& index, const MeshEntity& entity ) const { /**** * Return a number of non-zero elements in a line (associated with given grid element) of * the linear system. * The following example is the Laplace operator approximated * by the Finite difference method. */ return 2*Dimensions + 1; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity, typename Vector, typename MatrixRow > __cuda_callable__ void LaxFridrichs< Meshes::Grid< 2, MeshReal, Device, MeshIndex >, Real, Index >:: updateLinearSystem( const RealType& time, const RealType& tau, const MeshType& mesh, const IndexType& index, const MeshEntity& entity, const MeshFunctionType& u, Vector& b, MatrixRow& matrixRow ) const { /**** * Setup the non-zero elements of the linear system here. * The following example is the Laplace operator appriximated * by the Finite difference method. */ const typename MeshEntity::template NeighbourEntities< 2 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& lambdaX = tau * entity.getMesh().template getSpaceStepsProducts< -2, 0 >(); const RealType& lambdaY = tau * entity.getMesh().template getSpaceStepsProducts< 0, -2 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1, 0 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1, 0 >(); const IndexType& north = neighbourEntities.template getEntityIndex< 0, 1 >(); const IndexType& south = neighbourEntities.template getEntityIndex< 0, -1 >(); matrixRow.setElement( 0, south, -lambdaY ); matrixRow.setElement( 1, west, -lambdaX ); matrixRow.setElement( 2, center, 2.0 * ( lambdaX + lambdaY ) ); matrixRow.setElement( 3, east, -lambdaX ); matrixRow.setElement( 4, north, -lambdaY ); } /**** * 3D problem */ template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > String LaxFridrichs< Meshes::Grid< 3, MeshReal, Device, MeshIndex >, Real, Index >:: getType() { return String( "LaxFridrichs< " ) + MeshType::getType() + ", " + TNL::getType< Real >() + ", " + TNL::getType< Index >() + " >"; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshFunction, typename MeshEntity > __cuda_callable__ Real LaxFridrichs< Meshes::Grid< 3, MeshReal, Device, MeshIndex >, Real, Index >:: operator()( const MeshFunction& u, const MeshEntity& entity, const Real& time ) const { /**** * Implement your explicit form of the differential operator here. * The following example is the Laplace operator approximated * by the Finite difference method. */ static_assert( MeshEntity::entityDimensions == 3, "Wrong mesh entity dimensions." ); static_assert( MeshFunction::getEntitiesDimensions() == 3, "Wrong preimage function" ); const typename MeshEntity::template NeighbourEntities< 3 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& hxSquareInverse = entity.getMesh().template getSpaceStepsProducts< -2, 0, 0 >(); const RealType& hySquareInverse = entity.getMesh().template getSpaceStepsProducts< 0, -2, 0 >(); const RealType& hzSquareInverse = entity.getMesh().template getSpaceStepsProducts< 0, 0, -2 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1, 0, 0 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1, 0, 0 >(); const IndexType& north = neighbourEntities.template getEntityIndex< 0, 1, 0 >(); const IndexType& south = neighbourEntities.template getEntityIndex< 0, -1, 0 >(); const IndexType& up = neighbourEntities.template getEntityIndex< 0, 0, 1 >(); const IndexType& down = neighbourEntities.template getEntityIndex< 0, 0, -1 >(); return ( u[ west ] - 2.0 * u[ center ] + u[ east ] ) * hxSquareInverse + ( u[ south ] - 2.0 * u[ center ] + u[ north ] ) * hySquareInverse + ( u[ up ] - 2.0 * u[ center ] + u[ down ] ) * hzSquareInverse; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity > __cuda_callable__ Index LaxFridrichs< Meshes::Grid< 3, MeshReal, Device, MeshIndex >, Real, Index >:: getLinearSystemRowLength( const MeshType& mesh, const IndexType& index, const MeshEntity& entity ) const { /**** * Return a number of non-zero elements in a line (associated with given grid element) of * the linear system. * The following example is the Laplace operator approximated * by the Finite difference method. */ //return 2*Dimensions + 1; } template< typename MeshReal, typename Device, typename MeshIndex, typename Real, typename Index > template< typename MeshEntity, typename Vector, typename MatrixRow > __cuda_callable__ void LaxFridrichs< Meshes::Grid< 3, MeshReal, Device, MeshIndex >, Real, Index >:: updateLinearSystem( const RealType& time, const RealType& tau, const MeshType& mesh, const IndexType& index, const MeshEntity& entity, const MeshFunctionType& u, Vector& b, MatrixRow& matrixRow ) const { /**** * Setup the non-zero elements of the linear system here. * The following example is the Laplace operator appriximated * by the Finite difference method. */ /* const typename MeshEntity::template NeighbourEntities< 3 >& neighbourEntities = entity.getNeighbourEntities(); const RealType& lambdaX = tau * entity.getMesh().template getSpaceStepsProducts< -2, 0, 0 >(); const RealType& lambdaY = tau * entity.getMesh().template getSpaceStepsProducts< 0, -2, 0 >(); const RealType& lambdaZ = tau * entity.getMesh().template getSpaceStepsProducts< 0, 0, -2 >(); const IndexType& center = entity.getIndex(); const IndexType& east = neighbourEntities.template getEntityIndex< 1, 0, 0 >(); const IndexType& west = neighbourEntities.template getEntityIndex< -1, 0, 0 >(); const IndexType& north = neighbourEntities.template getEntityIndex< 0, 1, 0 >(); const IndexType& south = neighbourEntities.template getEntityIndex< 0, -1, 0 >(); const IndexType& up = neighbourEntities.template getEntityIndex< 0, 0, 1 >(); const IndexType& down = neighbourEntities.template getEntityIndex< 0, 0, -1 >(); matrixRow.setElement( 0, down, -lambdaZ ); matrixRow.setElement( 1, south, -lambdaY ); matrixRow.setElement( 2, west, -lambdaX ); matrixRow.setElement( 3, center, 2.0 * ( lambdaX + lambdaY + lambdaZ ) ); matrixRow.setElement( 4, east, -lambdaX ); matrixRow.setElement( 5, north, -lambdaY ); matrixRow.setElement( 6, up, -lambdaZ );*/ } } // namespace TNL #endif /* LaxFridrichsIMPL_H */