/*************************************************************************** DistributedSpMV.h - description ------------------- begin : Sep 20, 2018 copyright : (C) 2018 by Tomas Oberhuber et al. email : tomas.oberhuber@fjfi.cvut.cz ***************************************************************************/ /* See Copyright Notice in tnl/Copyright */ // Implemented by: Jakub Klinkovský #pragma once #include <TNL/DistributedContainers/Partitioner.h> #include <TNL/DistributedContainers/DistributedVectorView.h> // buffers #include <vector> #include <utility> // std::pair #include <TNL/Matrices/Dense.h> #include <TNL/Containers/Vector.h> #include <TNL/Containers/VectorView.h> // operations #include <type_traits> // std::add_const #include <TNL/Atomic.h> #include <TNL/ParallelFor.h> #include <TNL/Pointers/DevicePointer.h> namespace TNL { namespace DistributedContainers { template< typename Matrix, typename Communicator > class DistributedSpMV { public: using MatrixType = Matrix; using RealType = typename Matrix::RealType; using DeviceType = typename Matrix::DeviceType; using IndexType = typename Matrix::IndexType; using CommunicatorType = Communicator; using CommunicationGroup = typename CommunicatorType::CommunicationGroup; using Partitioner = DistributedContainers::Partitioner< typename Matrix::IndexType, Communicator >; // - communication pattern matrix is an nproc x nproc binary matrix C, where // C_ij = 1 iff the i-th process needs data from the j-th process // - assembly of the i-th row involves traversal of the local matrix stored // in the i-th process // - assembly the full matrix needs all-to-all communication void updateCommunicationPattern( const MatrixType& localMatrix, CommunicationGroup group ) { const int rank = CommunicatorType::GetRank( group ); const int nproc = CommunicatorType::GetSize( group ); commPattern.setDimensions( nproc, nproc ); // pass the localMatrix to the device const Pointers::DevicePointer< const MatrixType > localMatrixPointer( localMatrix ); // buffer for the local row of the commPattern matrix // using AtomicBool = Atomic< bool, DeviceType >; // FIXME: CUDA does not support atomic operations for bool using AtomicBool = Atomic< int, DeviceType >; Containers::Array< AtomicBool, DeviceType > buffer( nproc ); buffer.setValue( false ); // optimization for banded matrices using AtomicIndex = Atomic< IndexType, DeviceType >; Containers::Array< AtomicIndex, DeviceType > local_span( 2 ); local_span.setElement( 0, 0 ); // span start local_span.setElement( 1, localMatrix.getRows() ); // span end auto kernel = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix, AtomicBool* buffer, AtomicIndex* local_span ) { const IndexType columns = localMatrix->getColumns(); const auto row = localMatrix->getRow( i ); bool comm_left = false; bool comm_right = false; for( IndexType c = 0; c < row.getLength(); c++ ) { const IndexType j = row.getElementColumn( c ); if( j < columns ) { const int owner = Partitioner::getOwner( j, columns, nproc ); // atomic assignment buffer[ owner ].store( true ); // update comm_left/Right if( owner < rank ) comm_left = true; if( owner > rank ) comm_right = true; } } // update local span if( comm_left ) local_span[0].fetch_max( i + 1 ); if( comm_right ) local_span[1].fetch_min( i ); }; ParallelFor< DeviceType >::exec( (IndexType) 0, localMatrix.getRows(), kernel, &localMatrixPointer.template getData< DeviceType >(), buffer.getData(), local_span.getData() ); // set the local-only span (optimization for banded matrices) localOnlySpan.first = local_span.getElement( 0 ); localOnlySpan.second = local_span.getElement( 1 ); // copy the buffer into all rows of the preCommPattern matrix Matrices::Dense< bool, Devices::Host, int > preCommPattern; preCommPattern.setLike( commPattern ); for( int j = 0; j < nproc; j++ ) for( int i = 0; i < nproc; i++ ) preCommPattern.setElementFast( j, i, buffer.getElement( i ) ); // assemble the commPattern matrix CommunicatorType::Alltoall( &preCommPattern(0, 0), nproc, &commPattern(0, 0), nproc, group ); } template< typename InVector, typename OutVector > void vectorProduct( OutVector& outVector, const MatrixType& localMatrix, const InVector& inVector, CommunicationGroup group ) { const int rank = CommunicatorType::GetRank( group ); const int nproc = CommunicatorType::GetSize( group ); // update communication pattern if( commPattern.getRows() != nproc ) updateCommunicationPattern( localMatrix, group ); // prepare buffers globalBuffer.setSize( localMatrix.getColumns() ); commRequests.clear(); // send our data to all processes that need it for( int i = 0; i < commPattern.getRows(); i++ ) if( commPattern( i, rank ) ) commRequests.push_back( CommunicatorType::ISend( inVector.getLocalVectorView().getData(), inVector.getLocalVectorView().getSize(), i, group ) ); // receive data that we need for( int j = 0; j < commPattern.getRows(); j++ ) if( commPattern( rank, j ) ) commRequests.push_back( CommunicatorType::IRecv( &globalBuffer[ Partitioner::getOffset( globalBuffer.getSize(), j, nproc ) ], Partitioner::getSizeForRank( globalBuffer.getSize(), j, nproc ), j, group ) ); // general variant if( localOnlySpan.first >= localOnlySpan.second ) { // wait for all communications to finish CommunicatorType::WaitAll( &commRequests[0], commRequests.size() ); // perform matrix-vector multiplication auto outView = outVector.getLocalVectorView(); localMatrix.vectorProduct( globalBuffer, outView ); } // optimization for banded matrices else { auto outVectorView = outVector.getLocalVectorView(); const Pointers::DevicePointer< const MatrixType > localMatrixPointer( localMatrix ); using InView = DistributedVectorView< const typename InVector::RealType, typename InVector::DeviceType, typename InVector::IndexType, typename InVector::CommunicatorType >; const InView inView( inVector ); // matrix-vector multiplication using local-only rows auto kernel1 = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix ) mutable { outVectorView[ i ] = localMatrix->rowVectorProduct( i, inView ); }; ParallelFor< DeviceType >::exec( localOnlySpan.first, localOnlySpan.second, kernel1, &localMatrixPointer.template getData< DeviceType >() ); // wait for all communications to finish CommunicatorType::WaitAll( &commRequests[0], commRequests.size() ); // finish the multiplication by adding the non-local entries Containers::VectorView< RealType, DeviceType, IndexType > globalBufferView( globalBuffer ); auto kernel2 = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix ) mutable { outVectorView[ i ] = localMatrix->rowVectorProduct( i, globalBufferView ); }; ParallelFor< DeviceType >::exec( (IndexType) 0, localOnlySpan.first, kernel2, &localMatrixPointer.template getData< DeviceType >() ); ParallelFor< DeviceType >::exec( localOnlySpan.second, localMatrix.getRows(), kernel2, &localMatrixPointer.template getData< DeviceType >() ); } } void reset() { commPattern.reset(); localOnlySpan.first = localOnlySpan.second = 0; globalBuffer.reset(); commRequests.clear(); } protected: // communication pattern Matrices::Dense< bool, Devices::Host, int > commPattern; // span of rows with only block-diagonal entries std::pair< IndexType, IndexType > localOnlySpan; // global buffer for non-local elements of the vector Containers::Vector< RealType, DeviceType, IndexType > globalBuffer; // buffer for asynchronous communication requests std::vector< typename CommunicatorType::Request > commRequests; }; } // namespace DistributedContainers } // namespace TNL