Newer
Older
/***************************************************************************
DistributedSpMV.h - description
-------------------
begin : Sep 20, 2018
copyright : (C) 2018 by Tomas Oberhuber et al.
email : tomas.oberhuber@fjfi.cvut.cz
***************************************************************************/
/* See Copyright Notice in tnl/Copyright */
// Implemented by: Jakub Klinkovský
#pragma once
#include <TNL/Containers/Partitioner.h>
#include <TNL/Containers/DistributedVectorView.h>
// buffers
#include <vector>
#include <utility> // std::pair
#include <TNL/Matrices/Dense.h>
#include <TNL/Containers/Vector.h>
#include <TNL/Containers/VectorView.h>
#include <TNL/Matrices/ThreePartVector.h>
// operations
#include <type_traits> // std::add_const
#include <TNL/Atomic.h>
#include <TNL/ParallelFor.h>
#include <TNL/Pointers/DevicePointer.h>
namespace TNL {
namespace Matrices {
template< typename Matrix, typename Communicator >
class DistributedSpMV
{
public:
using MatrixType = Matrix;
using RealType = typename Matrix::RealType;
using DeviceType = typename Matrix::DeviceType;
using IndexType = typename Matrix::IndexType;
using CommunicatorType = Communicator;
using CommunicationGroup = typename CommunicatorType::CommunicationGroup;
using Partitioner = Containers::Partitioner< typename Matrix::IndexType, Communicator >;
// - communication pattern: vector components whose indices are in the range
// [start_ij, end_ij) are copied from the j-th process to the i-th process
// (an empty range with start_ij == end_ij indicates that there is no
// communication between the i-th and j-th processes)
// - communication pattern matrices - we need to assemble two nproc x nproc
// matrices commPatternStarts and commPatternEnds holding the values
// start_ij and end_ij respectively
// - assembly of the i-th row involves traversal of the local matrix stored
// in the i-th process
// - assembly of the full matrix needs all-to-all communication
void updateCommunicationPattern( const MatrixType& localMatrix, CommunicationGroup group )
{
const int rank = CommunicatorType::GetRank( group );
const int nproc = CommunicatorType::GetSize( group );
commPatternStarts.setDimensions( nproc, nproc );
commPatternEnds.setDimensions( nproc, nproc );
// pass the localMatrix to the device
const Pointers::DevicePointer< const MatrixType > localMatrixPointer( localMatrix );
// buffer for the local row of the commPattern matrix
using AtomicIndex = Atomic< IndexType, DeviceType >;
Containers::Array< AtomicIndex, DeviceType > span_starts( nproc ), span_ends( nproc );
span_starts.setValue( std::numeric_limits<IndexType>::max() );
span_ends.setValue( 0 );
// optimization for banded matrices
using AtomicIndex = Atomic< IndexType, DeviceType >;
Containers::Array< AtomicIndex, DeviceType > local_span( 2 );
local_span.setElement( 0, 0 ); // span start
local_span.setElement( 1, localMatrix.getRows() ); // span end
auto kernel = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix,
AtomicIndex* span_starts, AtomicIndex* span_ends, AtomicIndex* local_span )
{
const IndexType columns = localMatrix->getColumns();
const auto row = localMatrix->getRow( i );
bool comm_left = false;
bool comm_right = false;
for( IndexType c = 0; c < row.getLength(); c++ ) {
const IndexType j = row.getElementColumn( c );
if( j < columns ) {
const int owner = Partitioner::getOwner( j, columns, nproc );
// atomic assignment
span_starts[ owner ].fetch_min( j );
span_ends[ owner ].fetch_max( j + 1 );
// update comm_left/right
if( owner < rank )
comm_left = true;
if( owner > rank )
comm_right = true;
}
}
// update local span
if( comm_left )
local_span[0].fetch_max( i + 1 );
if( comm_right )
local_span[1].fetch_min( i );
};
ParallelFor< DeviceType >::exec( (IndexType) 0, localMatrix.getRows(),
kernel,
&localMatrixPointer.template getData< DeviceType >(),
span_starts.getData(),
span_ends.getData(),
local_span.getData()
);
// set the local-only span (optimization for banded matrices)
localOnlySpan.first = local_span.getElement( 0 );
localOnlySpan.second = local_span.getElement( 1 );
// copy the buffer into all rows of the preCommPattern* matrices
// (in-place copy does not work with some OpenMPI configurations)
Matrices::Dense< IndexType, Devices::Host, int > preCommPatternStarts, preCommPatternEnds;
preCommPatternStarts.setLike( commPatternStarts );
preCommPatternEnds.setLike( commPatternEnds );
preCommPatternStarts.setElementFast( j, i, span_starts.getElement( i ) );
preCommPatternEnds.setElementFast( j, i, span_ends.getElement( i ) );
CommunicatorType::Alltoall( &preCommPatternStarts(0, 0), nproc,
&commPatternStarts(0, 0), nproc,
group );
CommunicatorType::Alltoall( &preCommPatternEnds(0, 0), nproc,
group );
}
template< typename InVector,
typename OutVector >
void vectorProduct( OutVector& outVector,
const MatrixType& localMatrix,
const InVector& inVector,
CommunicationGroup group )
{
const int rank = CommunicatorType::GetRank( group );
const int nproc = CommunicatorType::GetSize( group );
// update communication pattern
if( commPatternStarts.getRows() != nproc || commPatternEnds.getRows() != nproc )
updateCommunicationPattern( localMatrix, group );
// prepare buffers
commRequests.clear();
globalBuffer.init( Partitioner::getOffset( localMatrix.getColumns(), rank, nproc ),
inVector.getLocalVectorView(),
localMatrix.getColumns() - Partitioner::getOffset( localMatrix.getColumns(), rank, nproc ) - inVector.getLocalVectorView().getSize() );
const auto globalBufferView = globalBuffer.getConstView();
// send our data to all processes that need it
for( int i = 0; i < commPatternStarts.getRows(); i++ ) {
if( i == rank )
continue;
if( commPatternStarts( i, rank ) < commPatternEnds( i, rank ) )
commRequests.push_back( CommunicatorType::ISend(
inVector.getLocalVectorView().getData() + commPatternStarts( i, rank ) - Partitioner::getOffset( localMatrix.getColumns(), rank, nproc ),
commPatternEnds( i, rank ) - commPatternStarts( i, rank ),
for( int j = 0; j < commPatternStarts.getRows(); j++ ) {
if( j == rank )
continue;
if( commPatternStarts( rank, j ) < commPatternEnds( rank, j ) )
commRequests.push_back( CommunicatorType::IRecv(
&globalBuffer[ commPatternStarts( rank, j ) ],
commPatternEnds( rank, j ) - commPatternStarts( rank, j ),
// general variant
if( localOnlySpan.first >= localOnlySpan.second ) {
// wait for all communications to finish
CommunicatorType::WaitAll( &commRequests[0], commRequests.size() );
// perform matrix-vector multiplication
auto outVectorView = outVector.getLocalVectorView();
const Pointers::DevicePointer< const MatrixType > localMatrixPointer( localMatrix );
auto kernel = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix ) mutable
{
outVectorView[ i ] = localMatrix->rowVectorProduct( i, globalBufferView );
};
ParallelFor< DeviceType >::exec( (IndexType) 0, localMatrix.getRows(), kernel,
&localMatrixPointer.template getData< DeviceType >() );
}
// optimization for banded matrices
else {
auto outVectorView = outVector.getLocalVectorView();
const Pointers::DevicePointer< const MatrixType > localMatrixPointer( localMatrix );
using InView = Containers::DistributedVectorView< const typename InVector::RealType, typename InVector::DeviceType, typename InVector::IndexType, typename InVector::CommunicatorType >;
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
const InView inView( inVector );
// matrix-vector multiplication using local-only rows
auto kernel1 = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix ) mutable
{
outVectorView[ i ] = localMatrix->rowVectorProduct( i, inView );
};
ParallelFor< DeviceType >::exec( localOnlySpan.first, localOnlySpan.second, kernel1,
&localMatrixPointer.template getData< DeviceType >() );
// wait for all communications to finish
CommunicatorType::WaitAll( &commRequests[0], commRequests.size() );
// finish the multiplication by adding the non-local entries
auto kernel2 = [=] __cuda_callable__ ( IndexType i, const MatrixType* localMatrix ) mutable
{
outVectorView[ i ] = localMatrix->rowVectorProduct( i, globalBufferView );
};
ParallelFor< DeviceType >::exec( (IndexType) 0, localOnlySpan.first, kernel2,
&localMatrixPointer.template getData< DeviceType >() );
ParallelFor< DeviceType >::exec( localOnlySpan.second, localMatrix.getRows(), kernel2,
&localMatrixPointer.template getData< DeviceType >() );
}
}
void reset()
{
commPatternStarts.reset();
commPatternEnds.reset();
localOnlySpan.first = localOnlySpan.second = 0;
globalBuffer.reset();
commRequests.clear();
}
protected:
// communication pattern
Matrices::Dense< IndexType, Devices::Host, int > commPatternStarts, commPatternEnds;
// span of rows with only block-diagonal entries
std::pair< IndexType, IndexType > localOnlySpan;
// global buffer for non-local elements of the vector
__DistributedSpMV_impl::ThreePartVector< RealType, DeviceType, IndexType > globalBuffer;
// buffer for asynchronous communication requests
std::vector< typename CommunicatorType::Request > commRequests;
};
} // namespace Matrices