Newer
Older
Lukas Cejka
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/***************************************************************************
spmv.h - description
-------------------
begin : Dec 30, 2015
copyright : (C) 2015 by Tomas Oberhuber et al.
email : tomas.oberhuber@fjfi.cvut.cz
***************************************************************************/
/* See Copyright Notice in tnl/Copyright */
// Implemented by: Jakub Klinkovsky
#pragma once
#include "../Benchmarks.h"
#include <TNL/Pointers/DevicePointer.h>
#include <TNL/Matrices/CSR.h>
#include <TNL/Matrices/Ellpack.h>
#include <TNL/Matrices/SlicedEllpack.h>
#include <TNL/Matrices/ChunkedEllpack.h>
namespace TNL {
namespace Benchmarks {
// silly alias to match the number of template parameters with other formats
template< typename Real, typename Device, typename Index >
using SlicedEllpack = Matrices::SlicedEllpack< Real, Device, Index >;
template< typename Matrix >
int setHostTestMatrix( Matrix& matrix,
const int elementsPerRow )
{
const int size = matrix.getRows();
int elements( 0 );
for( int row = 0; row < size; row++ ) {
int col = row - elementsPerRow / 2;
for( int element = 0; element < elementsPerRow; element++ ) {
if( col + element >= 0 &&
col + element < size )
{
matrix.setElement( row, col + element, element + 1 );
elements++;
}
}
}
return elements;
}
#ifdef HAVE_CUDA
template< typename Matrix >
__global__ void setCudaTestMatrixKernel( Matrix* matrix,
const int elementsPerRow,
const int gridIdx )
{
const int rowIdx = ( gridIdx * Devices::Cuda::getMaxGridSize() + blockIdx.x ) * blockDim.x + threadIdx.x;
if( rowIdx >= matrix->getRows() )
return;
int col = rowIdx - elementsPerRow / 2;
for( int element = 0; element < elementsPerRow; element++ ) {
if( col + element >= 0 &&
col + element < matrix->getColumns() )
matrix->setElementFast( rowIdx, col + element, element + 1 );
}
}
#endif
template< typename Matrix >
void setCudaTestMatrix( Matrix& matrix,
const int elementsPerRow )
{
#ifdef HAVE_CUDA
typedef typename Matrix::IndexType IndexType;
typedef typename Matrix::RealType RealType;
Pointers::DevicePointer< Matrix > kernel_matrix( matrix );
dim3 cudaBlockSize( 256 ), cudaGridSize( Devices::Cuda::getMaxGridSize() );
const IndexType cudaBlocks = roundUpDivision( matrix.getRows(), cudaBlockSize.x );
const IndexType cudaGrids = roundUpDivision( cudaBlocks, Devices::Cuda::getMaxGridSize() );
for( IndexType gridIdx = 0; gridIdx < cudaGrids; gridIdx++ ) {
if( gridIdx == cudaGrids - 1 )
cudaGridSize.x = cudaBlocks % Devices::Cuda::getMaxGridSize();
setCudaTestMatrixKernel< Matrix >
<<< cudaGridSize, cudaBlockSize >>>
( &kernel_matrix.template modifyData< Devices::Cuda >(), elementsPerRow, gridIdx );
TNL_CHECK_CUDA_DEVICE;
}
#endif
}
// TODO: rename as benchmark_SpMV_synthetic and move to spmv-synthetic.h
template< typename Real,
template< typename, typename, typename > class Matrix,
template< typename, typename, typename > class Vector = Containers::Vector >
bool
benchmarkSpMV( Benchmark & benchmark,
const int & size,
const int elementsPerRow = 5 )
{
typedef Matrix< Real, Devices::Host, int > HostMatrix;
typedef Matrix< Real, Devices::Cuda, int > DeviceMatrix;
typedef Containers::Vector< Real, Devices::Host, int > HostVector;
typedef Containers::Vector< Real, Devices::Cuda, int > CudaVector;
HostMatrix hostMatrix;
DeviceMatrix deviceMatrix;
Containers::Vector< int, Devices::Host, int > hostRowLengths;
Containers::Vector< int, Devices::Cuda, int > deviceRowLengths;
HostVector hostVector, hostVector2;
CudaVector deviceVector, deviceVector2;
// create benchmark group
const std::vector< String > parsedType = parseObjectType( HostMatrix::getType() );
#ifdef HAVE_CUDA
benchmark.createHorizontalGroup( parsedType[ 0 ], 2 );
#else
benchmark.createHorizontalGroup( parsedType[ 0 ], 1 );
#endif
hostRowLengths.setSize( size );
hostMatrix.setDimensions( size, size );
hostVector.setSize( size );
hostVector2.setSize( size );
#ifdef HAVE_CUDA
deviceRowLengths.setSize( size );
deviceMatrix.setDimensions( size, size );
deviceVector.setSize( size );
deviceVector2.setSize( size );
#endif
hostRowLengths.setValue( elementsPerRow );
#ifdef HAVE_CUDA
deviceRowLengths.setValue( elementsPerRow );
#endif
hostMatrix.setCompressedRowLengths( hostRowLengths );
#ifdef HAVE_CUDA
deviceMatrix.setCompressedRowLengths( deviceRowLengths );
#endif
const int elements = setHostTestMatrix< HostMatrix >( hostMatrix, elementsPerRow );
setCudaTestMatrix< DeviceMatrix >( deviceMatrix, elementsPerRow );
const double datasetSize = (double) elements * ( 2 * sizeof( Real ) + sizeof( int ) ) / oneGB;
// reset function
auto reset = [&]() {
hostVector.setValue( 1.0 );
hostVector2.setValue( 0.0 );
#ifdef HAVE_CUDA
deviceVector.setValue( 1.0 );
deviceVector2.setValue( 0.0 );
#endif
};
// compute functions
auto spmvHost = [&]() {
hostMatrix.vectorProduct( hostVector, hostVector2 );
};
auto spmvCuda = [&]() {
deviceMatrix.vectorProduct( deviceVector, deviceVector2 );
};
benchmark.setOperation( datasetSize );
benchmark.time< Devices::Host >( reset, "CPU", spmvHost );
#ifdef HAVE_CUDA
benchmark.time< Devices::Cuda >( reset, "GPU", spmvCuda );
#endif
return true;
}
template< typename Real = double,
typename Index = int >
bool
benchmarkSpmvSynthetic( Benchmark & benchmark,
const int & size,
const int & elementsPerRow )
{
bool result = true;
// TODO: benchmark all formats from tnl-benchmark-spmv (different parameters of the base formats)
result |= benchmarkSpMV< Real, Matrices::CSR >( benchmark, size, elementsPerRow );
// result |= benchmarkSpMV< Real, Matrices::Ellpack >( benchmark, size, elementsPerRow );
// result |= benchmarkSpMV< Real, SlicedEllpack >( benchmark, size, elementsPerRow );
// result |= benchmarkSpMV< Real, Matrices::ChunkedEllpack >( benchmark, size, elementsPerRow );
return result;
}
} // namespace Benchmarks
} // namespace TNL