Newer
Older
Tomáš Oberhuber
committed
/***************************************************************************
tnl-benchmarks.h - description
-------------------
begin : Jan 27, 2010
copyright : (C) 2010 by Tomas Oberhuber
email : tomas.oberhuber@fjfi.cvut.cz
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
#ifndef TNLBENCHMARKS_H_
#define TNLBENCHMARKS_H_
#include <core/mfuncs.h>
#include <core/tnlTimerCPU.h>
#include <../tests/unit-tests/core/tnl-cuda-kernels.h>
Tomáš Oberhuber
committed
template< class T >
bool transferBenchmark( const int size,
double& host_to_host_band_width,
double& host_to_device_band_width,
double& device_to_host_band_width,
double& device_to_device_band_width )
{
tnlLongVector< T > host_vector( "transferBenchmark:host-vector", size );
tnlLongVector< T > host_vector2( "transferBenchmark:host-vector-2", size );
tnlLongVector< T, tnlCuda > device_vector( "transferBenchmark:device-vector", size );
tnlLongVector< T, tnlCuda > device_vector2( "transferBenchmark:device-vector-2", size );
for( int i = 0; i < size; i ++ )
host_vector[ i ] = i + 1;
const long int cycles = 100;
long int bytes = cycles * size * sizeof( int );
long int mega_byte = 1 << 20;
Tomáš Oberhuber
committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
timer. Reset();
for( int i = 0; i < cycles; i ++ )
if( ! host_vector2. copyFrom( host_vector ) )
return false;
double time = timer. GetTime();
double giga_byte = ( double ) ( 1 << 30 );
host_to_host_band_width = bytes / giga_byte / time;
cout << "Transfering " << bytes / mega_byte << " MB from HOST to HOST took " << time << " seconds. Bandwidth is " << host_to_host_band_width << " GB/s." << endl;
timer. Reset();
for( int i = 0; i < cycles; i ++ )
if( ! device_vector. copyFrom( host_vector ) )
return false;
time = timer. GetTime();
host_to_device_band_width = bytes / giga_byte / time;
cout << "Transfering " << bytes / mega_byte << " MB from HOST to DEVICE took " << time << " seconds. Bandwidth is " << host_to_device_band_width << " GB/s." << endl;
timer. Reset();
for( int i = 0; i < cycles; i ++ )
if( ! host_vector2. copyFrom( device_vector ) )
return false;
time = timer. GetTime();
device_to_host_band_width = bytes / giga_byte / time;
cout << "Transfering " << bytes / mega_byte << " MB from DEVICE to HOST took " << time << " seconds. Bandwidth is " << device_to_host_band_width << " GB/s." << endl;
timer. Reset();
for( int i = 0; i < cycles; i ++ )
if( ! device_vector2. copyFrom( device_vector ) )
return false;
time = timer. GetTime();
// Since we read and write tha data back we process twice as many bytes.
bytes *= 2;
device_to_device_band_width = bytes / giga_byte / time;
cout << "Transfering " << bytes / mega_byte << " MB from DEVICE to DEVICE took " << time << " seconds. Bandwidth is " << device_to_device_band_width << " GB/s." << endl;
}
template< class T >
void tnlCPUReductionSum( const tnlLongVector< T >& host_vector,
T& sum )
{
const T* data = host_vector. Data();
const int size = host_vector. getSize();
sum = 0.0;
for( int i = 0; i < size; i ++ )
sum += data[ i ];
};
template< class T >
void tnlCPUReductionMin( const tnlLongVector< T >& host_vector,
T& min )
{
const T* data = host_vector. Data();
const int size = host_vector. getSize();
//tnlAssert( data );
min = data[ 0 ];
for( int i = 1; i < size; i ++ )
min = :: Min( min, data[ i ] );
};
template< class T >
void tnlCPUReductionMax( const tnlLongVector< T >& host_vector,
T& max )
{
const T* data = host_vector. Data();
const int size = host_vector. getSize();
//tnlAssert( data );
max = data[ 0 ];
for( int i = 1; i < size; i ++ )
max = :: Max( max, data[ i ] );
};
template< class T >
void reductionBenchmark( const int size,
const int algorithm )
{
tnlLongVector< T > host_vector( "reductionBenchmark:host-vector", size );
tnlLongVector< T, tnlCuda > device_vector( "reductionBenchmark:device-vector", size );
tnlLongVector< T, tnlCuda > device_aux( "reductionBenchmark:device-aux", size / 2 );
for( int i = 0; i < size; i ++ )
host_vector[ i ] = i + 1;
device_vector. copyFrom( host_vector );
T sum, min, max;
const long int reducing_cycles( 10 );
tnlTimerCUDA timer;
timer. Reset();
for( int i = 0; i < reducing_cycles; i ++ )
{
switch( algorithm )
{
case 0: // reduction on CPU
tnlCPUReductionSum( host_vector, sum );
tnlCPUReductionMin( host_vector, sum );
tnlCPUReductionMax( host_vector, sum );
case 1:
tnlCUDASimpleReduction1Sum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction1Min( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction1Max( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
break;
case 2:
tnlCUDASimpleReduction2Sum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction2Min( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction2Max( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
break;
case 3:
tnlCUDASimpleReduction3Sum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction3Min( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction3Max( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
break;
case 4:
tnlCUDASimpleReduction4Sum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction4Min( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction4Max( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
break;
case 5:
tnlCUDASimpleReduction5Sum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction5Min( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDASimpleReduction5Max( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
break;
default:
tnlCUDAReductionSum( size,
Tomáš Oberhuber
committed
sum,
Tomáš Oberhuber
committed
tnlCUDAReductionMin( size,
Tomáš Oberhuber
committed
min,
Tomáš Oberhuber
committed
tnlCUDAReductionMax( size,
Tomáš Oberhuber
committed
max,
Tomáš Oberhuber
committed
}
}
const double time = timer. GetTime();
double giga_byte = ( double ) ( 1 << 30 );
long int mega_byte = 1 << 20;
long int bytes_reduced = size * sizeof( T ) * reducing_cycles * 3;
const double reduction_band_width = bytes_reduced / giga_byte / time;
cout << "Reducing " << bytes_reduced / mega_byte
<< " MB on DEVICE using algorithm " << algorithm
<< " took " << time
<< " seconds. Bandwidth is " << reduction_band_width
<< " GB/s." << endl;
}
#endif /* TNLBENCHMARKS_H_ */