Newer
Older
/***************************************************************************
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
-------------------
begin : Oct 25, 2010
copyright : (C) 2010 by Tomas Oberhuber
email : tomas.oberhuber@fjfi.cvut.cz
***************************************************************************/
/* See Copyright Notice in tnl/Copyright */
// NOTE: Vector = Array + VectorOperations, so we test Vector and VectorOperations at the same time
#pragma once
#ifdef HAVE_GTEST
#include <limits>
#include <TNL/Experimental/Arithmetics/Quad.h>
#include <TNL/Containers/Vector.h>
#include <TNL/Containers/VectorView.h>
#include "VectorTestSetup.h"
#include "gtest/gtest.h"
using namespace TNL;
using namespace TNL::Containers;
using namespace TNL::Containers::Algorithms;
using namespace TNL::Arithmetics;
// should be small enough to have fast tests, but larger than minGPUReductionDataSize
// and large enough to require multiple CUDA blocks for reduction
constexpr int VECTOR_TEST_SIZE = 5000;
TYPED_TEST( VectorTest, lpNorm )
{
using VectorType = typename TestFixture::VectorType;
using RealType = typename VectorType::RealType;
using VectorOperations = typename TestFixture::VectorOperations;
using ViewType = typename TestFixture::ViewType;
const int size = VECTOR_TEST_SIZE;
const RealType epsilon = 64 * std::numeric_limits< RealType >::epsilon();
VectorType v;
v.setSize( size );
ViewType v_view( v );
setConstantSequence( v, 1 );
const RealType expectedL1norm = size;
const RealType expectedL2norm = std::sqrt( size );
const RealType expectedL3norm = std::cbrt( size );
EXPECT_EQ( v.lpNorm( 1.0 ), expectedL1norm );
EXPECT_EQ( v.lpNorm( 2.0 ), expectedL2norm );
EXPECT_NEAR( v.lpNorm( 3.0 ), expectedL3norm, epsilon );
EXPECT_EQ( v_view.lpNorm( 1.0 ), expectedL1norm );
EXPECT_EQ( v_view.lpNorm( 2.0 ), expectedL2norm );
EXPECT_NEAR( v_view.lpNorm( 3.0 ), expectedL3norm, epsilon );
EXPECT_EQ( VectorOperations::getVectorLpNorm( v, 1.0 ), expectedL1norm );
EXPECT_EQ( VectorOperations::getVectorLpNorm( v, 2.0 ), expectedL2norm );
EXPECT_NEAR( VectorOperations::getVectorLpNorm( v, 3.0 ), expectedL3norm, epsilon );
}
TYPED_TEST( VectorTest, sum )
{
using VectorType = typename TestFixture::VectorType;
using VectorOperations = typename TestFixture::VectorOperations;
using ViewType = typename TestFixture::ViewType;
// this test expect an even size
const int size = VECTOR_TEST_SIZE % 2 ? VECTOR_TEST_SIZE - 1 : VECTOR_TEST_SIZE;
VectorType v;
v.setSize( size );
ViewType v_view( v );
setConstantSequence( v, 1 );
EXPECT_EQ( v.sum(), size );
EXPECT_EQ( v_view.sum(), size );
EXPECT_EQ( VectorOperations::getVectorSum( v ), size );
setLinearSequence( v );
EXPECT_EQ( v.sum(), 0.5 * size * ( size - 1 ) );
EXPECT_EQ( v_view.sum(), 0.5 * size * ( size - 1 ) );
EXPECT_EQ( VectorOperations::getVectorSum( v ), 0.5 * size * ( size - 1 ) );
setNegativeLinearSequence( v );
EXPECT_EQ( v.sum(), - 0.5 * size * ( size - 1 ) );
EXPECT_EQ( v_view.sum(), - 0.5 * size * ( size - 1 ) );
EXPECT_EQ( VectorOperations::getVectorSum( v ), - 0.5 * size * ( size - 1 ) );
setOscilatingSequence( v, 1.0 );
EXPECT_EQ( v.sum(), 0 );
EXPECT_EQ( v_view.sum(), 0 );
EXPECT_EQ( VectorOperations::getVectorSum( v ), 0 );
}
TYPED_TEST( VectorTest, differenceMax )
{
using VectorType = typename TestFixture::VectorType;
using VectorOperations = typename TestFixture::VectorOperations;
using ViewType = typename TestFixture::ViewType;
const int size = VECTOR_TEST_SIZE;
VectorType u( size ), v( size );
ViewType u_view( u ), v_view( v );
setLinearSequence( u );
setConstantSequence( v, size / 2 );
EXPECT_EQ( u.differenceMax( v ), size - 1 - size / 2 );
EXPECT_EQ( u_view.differenceMax( v_view ), size - 1 - size / 2 );
EXPECT_EQ( VectorOperations::getVectorDifferenceMax( u, v ), size - 1 - size / 2 );
}
TYPED_TEST( VectorTest, differenceMin )
{
using VectorType = typename TestFixture::VectorType;
using VectorOperations = typename TestFixture::VectorOperations;
using ViewType = typename TestFixture::ViewType;
const int size = VECTOR_TEST_SIZE;
VectorType u( size ), v( size );
ViewType u_view( u ), v_view( v );
setLinearSequence( u );
setConstantSequence( v, size / 2 );
EXPECT_EQ( u.differenceMin( v ), - size / 2 );
EXPECT_EQ( u_view.differenceMin( v_view ), - size / 2 );
EXPECT_EQ( VectorOperations::getVectorDifferenceMin( u, v ), - size / 2 );
EXPECT_EQ( v.differenceMin( u ), size / 2 - size + 1 );
EXPECT_EQ( v_view.differenceMin( u_view ), size / 2 - size + 1 );
EXPECT_EQ( VectorOperations::getVectorDifferenceMin( v, u ), size / 2 - size + 1 );
}
TYPED_TEST( VectorTest, differenceAbsMax )
{
using VectorType = typename TestFixture::VectorType;
using VectorOperations = typename TestFixture::VectorOperations;
using ViewType = typename TestFixture::ViewType;
// this test expects an odd size
const int size = VECTOR_TEST_SIZE % 2 ? VECTOR_TEST_SIZE : VECTOR_TEST_SIZE - 1;
VectorType u( size ), v( size );
ViewType u_view( u ), v_view( v );
setNegativeLinearSequence( u );
setConstantSequence( v, - size / 2 );
EXPECT_EQ( u.differenceAbsMax( v ), size - 1 - size / 2 );
EXPECT_EQ( u_view.differenceAbsMax( v_view ), size - 1 - size / 2 );
EXPECT_EQ( VectorOperations::getVectorDifferenceAbsMax( u, v ), size - 1 - size / 2 );
}
#endif // HAVE_GTEST
#include "../main.h"