Newer
Older
#ifndef eulerPROBLEM_IMPL_H_
#define eulerPROBLEM_IMPL_H_
#include <core/mfilename.h>
#include <matrices/tnlMatrixSetter.h>
#include <solvers/pde/tnlExplicitUpdater.h>
#include <solvers/pde/tnlLinearSystemAssembler.h>
#include <solvers/pde/tnlBackwardTimeDiscretisation.h>
#include "LaxFridrichsContinuity.h"
#include "LaxFridrichsMomentum.h"
#include "LaxFridrichsEnergy.h"
#include "EulerVelGetter.h"
#include "EulerPressureGetter.h"
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
tnlString
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
getTypeStatic()
{
return tnlString( "eulerProblem< " ) + Mesh :: getTypeStatic() + " >";
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
tnlString
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
getPrologHeader() const
{
return tnlString( "euler" );
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
void
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
writeProlog( tnlLogger& logger, const tnlParameterContainer& parameters ) const
{
/****
* Add data you want to have in the computation report (log) as follows:
* logger.writeParameter< double >( "Parameter description", parameter );
*/
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
bool
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
setup( const tnlParameterContainer& parameters )
{
if( ! this->boundaryCondition.setup( parameters, "boundary-conditions-" ) ||
! this->rightHandSide.setup( parameters, "right-hand-side-" ) )
return false;
return true;
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
typename eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::IndexType
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
getDofs( const MeshType& mesh ) const
{
/****
* Return number of DOFs (degrees of freedom) i.e. number
* of unknowns to be resolved by the main solver.
*/
return 3*mesh.template getEntitiesCount< typename MeshType::Cell >();
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
void
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
bindDofs( const MeshType& mesh,
DofVectorType& dofVector )
{
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
bool
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
setInitialCondition( const tnlParameterContainer& parameters,
const MeshType& mesh,
DofVectorType& dofs,
MeshDependentDataType& meshDependentData )
{
typedef typename MeshType::Cell Cell;
this->gamma = parameters.getParameter< double >( "gamma" );
double rhoL = parameters.getParameter< double >( "left-density" );
double velL = parameters.getParameter< double >( "left-velocity" );
double preL = parameters.getParameter< double >( "left-pressure" );
double eL = ( preL / (gamma - 1) ) + 0.5 * rhoL * velL * velL;
double rhoR = parameters.getParameter< double >( "right-density" );
double velR = parameters.getParameter< double >( "right-velocity" );
double preR = parameters.getParameter< double >( "right-pressure" );
double eR = ( preR / (gamma - 1) ) + 0.5 * rhoR * velR * velR;
double x0 = parameters.getParameter< double >( "riemann-border" );
cout << gamma << " " << rhoL << " " << velL << " " << preL << " " << eL << " " << rhoR << " " << velR << " " << preR << " " << eR << " " << x0 << " " << gamma << endl;
int count = mesh.template getEntitiesCount< Cell >()/3;
rho.bind(mesh,dofs,0);
rhoVel.bind(mesh,dofs,count);
energy.bind(mesh,dofs,2 * count);
// pressure(mesh);
// velocity(mesh);
/* for(long int i = 0; i < count; i++)
this->Rho[i] = rhoL;
this->RhoVel[i] = rhoL * velL;
this->Energy[i] = eL;
this->velocity[i] = velL;
this->pressure[i] = preL;
}
else
{
this->Rho[i] = rhoR;
this->RhoVel[i] = rhoR * velR;
this->Energy[i] = eR;
this->velocity[i] = velR;
this->pressure[i] = preR;
};
cout << "dofs = " << dofs << endl;
getchar();
/*
const tnlString& initialConditionFile = parameters.getParameter< tnlString >( "initial-condition" );
if( ! dofs.load( initialConditionFile ) )
{
cerr << "I am not able to load the initial condition from the file " << initialConditionFile << "." << endl;
return false;
}
*/
return true;
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
template< typename Matrix >
bool
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
setupLinearSystem( const MeshType& mesh,
Matrix& matrix )
{
/* const IndexType dofs = this->getDofs( mesh );
typedef typename Matrix::CompressedRowsLengthsVector CompressedRowsLengthsVectorType;
CompressedRowsLengthsVectorType rowLengths;
if( ! rowLengths.setSize( dofs ) )
return false;
tnlMatrixSetter< MeshType, DifferentialOperator, BoundaryCondition, CompressedRowsLengthsVectorType > matrixSetter;
matrixSetter.template getCompressedRowsLengths< typename Mesh::Cell >( mesh,
differentialOperator,
boundaryCondition,
rowLengths );
matrix.setDimensions( dofs, dofs );
if( ! matrix.setCompressedRowsLengths( rowLengths ) )
return true;
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
bool
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
makeSnapshot( const RealType& time,
const IndexType& step,
const MeshType& mesh,
DofVectorType& dofs,
MeshDependentDataType& meshDependentData )
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
cout << endl << "Writing output at time " << time << " step " << step << "." << endl;
this->bindDofs( mesh, dofs );
tnlString fileName;
ofstream vysledek;
cout << "pressure:" << endl;
for (int i = 0; i<100; i++) cout << this->pressure[i] << " " ;
vysledek.open("pressure" + to_string(step) + ".txt");
for (int i = 0; i<101; i++)
vysledek << 0.01*i << " " << pressure[i] << endl;
vysledek.close();
cout << " " << endl;
cout << "velocity:" << endl;
for (int i = 0; i<100; i++) cout << this->velocity[i] << " " ;
vysledek.open("velocity" + to_string(step) + ".txt");
for (int i = 0; i<101; i++)
vysledek << 0.01*i << " " << pressure[i] << endl;
vysledek.close();
cout << "energy:" << endl;
for (int i = 0; i<100; i++) cout << this->energy[i] << " " ;
vysledek.open("energy" + to_string(step) + ".txt");
for (int i = 0; i<101; i++)
vysledek << 0.01*i << " " << energy[i] << endl;
vysledek.close();
cout << " " << endl;
cout << "density:" << endl;
for (int i = 0; i<100; i++) cout << this->rho[i] << " " ;
vysledek.open("density" + to_string(step) + ".txt");
for (int i = 0; i<101; i++)
vysledek << 0.01*i << " " << rho[i] << endl;
vysledek.close();
getchar();
FileNameBaseNumberEnding( "rho-", step, 5, ".tnl", fileName );
if( ! rho.save( fileName ) )
return false;
FileNameBaseNumberEnding( "rhoVel-", step, 5, ".tnl", fileName );
if( ! rhoVel.save( fileName ) )
return false;
FileNameBaseNumberEnding( "energy-", step, 5, ".tnl", fileName );
if( ! energy.save( fileName ) )
return true;
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
void
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
getExplicitRHS( const RealType& time,
const RealType& tau,
const MeshType& mesh,
DofVectorType& _u,
DofVectorType& _fu,
MeshDependentDataType& meshDependentData )
{
typedef typename MeshType::Cell Cell;
int count = mesh.template getEntitiesCount< Cell >();
this->uRho.bind(mesh, _u, 0);
this->uRhoVelocity.bind(mesh, _u ,count);
this->uEnergy.bind(mesh, _u, 2 * count);
this->fuRho.bind(mesh, _u, 0);
this->fuRhoVelocity.bind(mesh, _u, count);
fuEnergy.bind(mesh, _u, 2 * count);
//generating Differential operator object
Continuity lF1DContinuity;
Momentum lF1DMomentum;
Energy lF1DEnergy;
//rho
this->bindDofs( mesh, _u );
lF1DContinuity.setTau(tau);
lF1DContinuity.setVelocity(velocity);
tnlExplicitUpdater< Mesh, MeshFunctionType, Continuity, BoundaryCondition, RightHandSide > explicitUpdaterContinuity;
explicitUpdaterContinuity.template update< typename Mesh::Cell >( time,
this->boundaryCondition,
this->rightHandSide,
uRho,
fuRho );
lF1DMomentum.setTau(tau);
lF1DMomentum.setVelocity(velocity);
lF1DMomentum.setPressure(pressure);
tnlExplicitUpdater< Mesh, MeshFunctionType, Momentum, BoundaryCondition, RightHandSide > explicitUpdaterMomentum;
explicitUpdaterMomentum.template update< typename Mesh::Cell >( time,
this->boundaryCondition,
this->rightHandSide,
uRhoVelocity,
fuRhoVelocity );
lF1DEnergy.setTau(tau);
lF1DEnergy.setPressure(pressure);
lF1DEnergy.setVelocity(velocity);
tnlExplicitUpdater< Mesh, MeshFunctionType, Energy, BoundaryCondition, RightHandSide > explicitUpdaterEnergy;
explicitUpdaterEnergy.template update< typename Mesh::Cell >( time,
this->boundaryCondition,
this->rightHandSide,
tnlBoundaryConditionsSetter< MeshFunctionType, BoundaryCondition > boundaryConditionsSetter;
boundaryConditionsSetter.template apply< typename Mesh::Cell >(
this->boundaryCondition,
time + tau,
}
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
template< typename Matrix >
void
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
assemblyLinearSystem( const RealType& time,
const RealType& tau,
const MeshType& mesh,
DofVectorType& _u,
Matrix& matrix,
DofVectorType& b,
MeshDependentDataType& meshDependentData )
{
MeshFunctionType,
DifferentialOperator,
BoundaryCondition,
RightHandSide,
tnlBackwardTimeDiscretisation,
Matrix,
DofVectorType > systemAssembler;
tnlMeshFunction< Mesh > u( mesh, _u );
systemAssembler.template assembly< typename Mesh::Cell >( time,
tau,
mesh,
this->differentialOperator,
this->boundaryCondition,
this->rightHandSide,
u,
matrix,
template< typename Mesh,
typename BoundaryCondition,
typename RightHandSide,
typename DifferentialOperator >
bool
eulerProblem< Mesh, BoundaryCondition, RightHandSide, DifferentialOperator >::
postIterate( const RealType& time,
const RealType& tau,
const MeshType& mesh,
DofVectorType& dofs,
MeshDependentDataType& meshDependentData )
{
//velocity
this->velocity.setMesh( mesh );
Velocity velocityGetter( uRho, uRhoVelocity );
this->velocity = velocityGetter;
/* //pressure
this->pressure.setMesh( mesh );
Pressure pressureGetter( velocity, RhoVelocity, Energy, gamma );
this->pressure = pressureGetter; */