- Apr 21, 2020
-
-
Tomáš Oberhuber authored
-
- Mar 04, 2020
-
-
Tomáš Oberhuber authored
-
- Mar 02, 2020
-
-
- Feb 29, 2020
-
-
Jakub Klinkovský authored
-
- Oct 25, 2019
-
-
Jakub Klinkovský authored
The usage of algorithms such as MemoryOperations or Reduction is not bound to a particular container. On the other hand, ArrayIO, ArrayAssignment, VectorAssignment and StaticArrayAssignment are just implementation details for the containers - moved into TNL/Containers/detail/ Also moved ParallelFor, StaticFor, StaticVectorFor, TemplateStaticFor into TNL/Algorithms/
-
Jakub Klinkovský authored
Moved synchronization of smart pointers from Devices::Cuda into TNL::Pointers namespace as free functions synchronizeDevice() was renamed to synchronizeSmartPointersOnDevice() for clarity - there are many similarly named functions in CUDA (e.g. cudaDeviceSynchronize()).
-
- Oct 24, 2019
-
-
Jakub Klinkovský authored
Fixes #46
-
Jakub Klinkovský authored
-
- Aug 05, 2019
-
-
Jakub Klinkovský authored
-
- Apr 19, 2019
-
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
- Mar 30, 2019
-
-
Jakub Klinkovský authored
Reference: https://stackoverflow.com/a/23766303 Documentation: https://cmake.org/cmake/help/latest/command/install.html#installing-directories
-
- Feb 09, 2019
-
-
Jakub Klinkovský authored
[ci skip]
-
- Dec 26, 2018
-
-
Jakub Klinkovský authored
fixes #13
-
- Dec 14, 2018
-
-
Tomáš Oberhuber authored
-
- Dec 12, 2018
-
-
- Nov 19, 2018
-
-
Tomáš Oberhuber authored
-
- Oct 19, 2018
-
-
Nina Džugasová authored
-
- Oct 04, 2018
-
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
- Sep 19, 2018
-
-
Jakub Klinkovský authored
-
- Sep 05, 2018
-
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
-
- Sep 02, 2018
-
-
Tomáš Oberhuber authored
-
- Aug 22, 2018
-
-
Tomáš Oberhuber authored
-
Tomáš Oberhuber authored
-
- Aug 21, 2018
-
-
Jakub Klinkovský authored
-
Jakub Klinkovský authored
It is not needed, since CUSPARSE is included in all versions of CUDA since at least 7.0. Also note that CUSPARSE is needed only for some tests and legacy code (tnl-benchmark-spmv and wrappers in Matrices::CSR) and experimental code (Preconditioners::ILU0). Everything is still guarded by the HAVE_CUSPARSE macro, so the user can pass -DHAVE_CUSPARSE -lcusparse to the compiler to enable the features.
-
- Jan 09, 2018
-
-
Jakub Klinkovský authored
-
- Jul 31, 2017
-
-
Jakub Klinkovský authored
-