Skip to content
Snippets Groups Projects
VectorPrefixSumTest.h 10.7 KiB
Newer Older
/***************************************************************************
                          VectorTest-2.h  -  description
                             -------------------
    begin                : Oct 25, 2010
    copyright            : (C) 2010 by Tomas Oberhuber
    email                : tomas.oberhuber@fjfi.cvut.cz
 ***************************************************************************/

/* See Copyright Notice in tnl/Copyright */

#pragma once

#ifdef HAVE_GTEST
#include "VectorTestSetup.h"

// should be small enough to have fast tests, but larger than minGPUReductionDataSize
// and large enough to require multiple CUDA blocks for reduction
{
   using VectorType = typename TestFixture::VectorType;
   using VectorOperations = typename TestFixture::VectorOperations;
   using ViewType = typename TestFixture::ViewType;
   using RealType = typename VectorType::RealType;
   using DeviceType = typename VectorType::DeviceType;
   using IndexType = typename VectorType::IndexType;
   const int size = VECTOR_TEST_SIZE;

   if( std::is_same< RealType, float >::value ||
       std::is_same< IndexType, short >::value )
   return;

   VectorType v( size );
   ViewType v_view( v );
   typename VectorType::HostType v_host( size );

   v = 0;
   v_host = -1;
   v.prefixSum();
   v_host = v;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], 0 );

   setLinearSequence( v );
   v_host = -1;
   v.prefixSum();
   v_host = v;
   for( int i = 1; i < size; i++ )
      EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i );

   setConstantSequence( v, 1 );
   v_host = -1;
   v_view.prefixSum();
   v_host = v_view;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], i + 1 );

   v = 0;
   v_host = -1;
   v_view.prefixSum();
   v_host = v_view;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], 0 );

   setLinearSequence( v );
   v_host = -1;
   v_view.prefixSum();
   v_host = v_view;
   for( int i = 1; i < size; i++ )
      EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i );

   ////
   // With CUDA, perform tests with multiple CUDA grids.
   if( std::is_same< DeviceType, Devices::Cuda >::value )
   {
#ifdef HAVE_CUDA
      Algorithms::CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::setMaxGridSize( 3 );
      v = 0;
      v_host = -1;
      v.prefixSum();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], 0 );

      setLinearSequence( v );
      v_host = -1;
      v.prefixSum();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v;
      for( int i = 1; i < size; i++ )
         EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i );

      setConstantSequence( v, 1 );
      v_host = -1;
      v_view.prefixSum();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], i + 1 );
      v = 0;
      v_host = -1;
      v_view.prefixSum();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], 0 );

      setLinearSequence( v );
      v_host = -1;
      v_view.prefixSum();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 1; i < size; i++ )
         EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i );
      CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Inclusive, RealType, IndexType >::resetMaxGridSize();
#endif
   }
TYPED_TEST( VectorTest, exclusivePrefixSum )
{
   using VectorType = typename TestFixture::VectorType;
   using VectorOperations = typename TestFixture::VectorOperations;
   using ViewType = typename TestFixture::ViewType;
   using RealType = typename VectorType::RealType;
   using DeviceType = typename VectorType::DeviceType;
   using IndexType = typename VectorType::IndexType;
   const int size = VECTOR_TEST_SIZE;

   if( std::is_same< RealType, float >::value ||
       std::is_same< IndexType, short >::value )
      return;

   VectorType v;
   v.setSize( size );
   ViewType v_view( v );
   typename VectorType::HostType v_host( size );

   setConstantSequence( v, 1 );
   v_host = -1;
   v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], i );

   v.setValue( 0 );
   v_host = -1;
   v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], 0 );

   setLinearSequence( v );
   v_host = -1;
   v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v;
   for( int i = 1; i < size; i++ )
      EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i - 1 );

   setConstantSequence( v, 1 );
   v_host = -1;
   v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v_view;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], i );

   v.setValue( 0 );
   v_host = -1;
   v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v_view;
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_host[ i ], 0 );

   setLinearSequence( v );
   v_host = -1;
   v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
   v_host = v_view;
   for( int i = 1; i < size; i++ )
      EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i - 1 );

   ////
   // With CUDA, perform tests with multiple CUDA grids.
   if( std::is_same< DeviceType, Devices::Cuda >::value )
   {
#ifdef HAVE_CUDA
      CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::setMaxGridSize( 3 );

      setConstantSequence( v, 1 );
      v_host = -1;
      v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], i );

      v.setValue( 0 );
      v_host = -1;
      v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], 0 );

      setLinearSequence( v );
      v_host = -1;
      v.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v;
      for( int i = 1; i < size; i++ )
         EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i - 1 );

      setConstantSequence( v, 1 );
      v_host = -1;
      v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], i );

      v.setValue( 0 );
      v_host = -1;
      v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_host[ i ], 0 );

      setLinearSequence( v );
      v_host = -1;
      v_view.template prefixSum< Algorithms::PrefixSumType::Exclusive >();
      EXPECT_GT( ( CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::gridsCount ), 1  );
      v_host = v_view;
      for( int i = 1; i < size; i++ )
         EXPECT_EQ( v_host[ i ] - v_host[ i - 1 ], i - 1 );
      CudaPrefixSumKernelLauncher< Algorithms::PrefixSumType::Exclusive, RealType, IndexType >::resetMaxGridSize();
#endif
   }
// TODO: test prefix sum with custom begin and end parameters
template< typename FlagsView >
void setupFlags( FlagsView& f )
{
   auto f1 = [] __cuda_callable__ ( typename FlagsView::IndexType i ) { return ( i % 5 ) == 0; };
   f.evaluate( f1 );
/*
TYPED_TEST( VectorTest, segmentedPrefixSum )
{
   using VectorType = typename TestFixture::VectorType;
   using ViewType = typename TestFixture::ViewType;
   using RealType = typename VectorType::RealType;
   using DeviceType = typename VectorType::DeviceType;
   using IndexType = typename VectorType::IndexType;
   using FlagsArrayType = Array< bool, DeviceType, IndexType >;
   using FlagsViewType = ArrayView< bool, DeviceType, IndexType >;
   const int size = VECTOR_TEST_SIZE;

   FlagsArrayType flags( size ), flags_copy( size );
   FlagsViewType flags_view( flags );
   //auto f1 = [] __cuda_callable__ ( IndexType i ) { return ( i % 5 ) == 0; };
   //flags_view.evaluate( f1 );
   setupFlags( flags_view );
   flags_copy = flags_view;
   v = 0;
   v.computeSegmentedPrefixSum( flags_view );
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v.getElement( i ), 0 );
   flags_view = flags_copy;
   v = 1;
   v.computeSegmentedPrefixSum( flags_view );
   for( int i = 0; i < size; i++ )
         EXPECT_EQ( v.getElement( i ), ( i % 5 ) + 1 );
   flags_view = flags_copy;

   setLinearSequence( v );
   v.computeSegmentedPrefixSum( flags_view );
   for( int i = 1; i < size; i++ )
   {
      if( flags.getElement( i ) )
         EXPECT_EQ( v.getElement( i ), i );
      else
         EXPECT_EQ( v.getElement( i ) - v.getElement( i - 1 ), i );
   }
   flags_view = flags_copy;

   v_view = 0;
   v_view.computeSegmentedPrefixSum( flags_view );
   for( int i = 0; i < size; i++ )
      EXPECT_EQ( v_view.getElement( i ), 0 );
   flags_view = flags_copy;
   v_view = 1;
   v_view.computeSegmentedPrefixSum( flags_view );
   for( int i = 0; i < size; i++ )
         EXPECT_EQ( v_view.getElement( i ), ( i % 5 ) + 1 );
   flags_view = flags_copy;

   //v_view.evaluate( [] __cuda_callable__ ( IndexType i ) { return i; } );
   setLinearSequence( v );
   v_view.computeSegmentedPrefixSum( flags_view );
   for( int i = 1; i < size; i++ )
   {
      if( flags.getElement( i ) )
         EXPECT_EQ( v_view.getElement( i ), i );
      else
         EXPECT_EQ( v_view.getElement( i ) - v_view.getElement( i - 1 ), i );
   }
}
*/