Newer
Older
Lukas Cejka
committed
/***************************************************************************
spmv.h - description
-------------------
Lukas Cejka
committed
copyright : (C) 2015 by Tomas Oberhuber et al.
email : tomas.oberhuber@fjfi.cvut.cz
***************************************************************************/
/* See Copyright Notice in tnl/Copyright */
// Original implemented by J. Klinkovsky in Benchmarks/BLAS
// This is an edited copy of Benchmarks/BLAS/spmv.h by: Lukas Cejka
Lukas Cejka
committed
#pragma once
#include "../Benchmarks.h"
#include <TNL/Pointers/DevicePointer.h>
Tomáš Oberhuber
committed
#include <TNL/Matrices/Legacy/CSR.h>
#include <TNL/Matrices/Legacy/Ellpack.h>
#include <TNL/Matrices/Legacy/SlicedEllpack.h>
#include <TNL/Matrices/Legacy/ChunkedEllpack.h>
#include <TNL/Matrices/Legacy/AdEllpack.h>
#include <TNL/Matrices/Legacy/BiEllpack.h>
Lukas Cejka
committed
#include <TNL/Matrices/MatrixReader.h>
Tomáš Oberhuber
committed
#include <TNL/Matrices/MatrixType.h>
#include <TNL/Containers/Segments/CSR.h>
#include <TNL/Containers/Segments/Ellpack.h>
#include <TNL/Containers/Segments/SlicedEllpack.h>
Lukas Cejka
committed
using namespace TNL::Matrices;
Lukas Cejka
committed
#include "cusparseCSRMatrix.h"
Lukas Cejka
committed
namespace TNL {
namespace Benchmarks {
// Alias to match the number of template parameters with other formats
Lukas Cejka
committed
template< typename Real, typename Device, typename Index >
using SlicedEllpackAlias = Matrices::SlicedEllpack< Real, Device, Index >;
Lukas Cejka
committed
// Segments based sparse matrix aliases
template< typename Real, typename Device, typename Index >
Tomáš Oberhuber
committed
using SparseMatrix_CSR = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, Containers::Segments::CSR >;
template< typename Device, typename Index, typename IndexAllocator >
using EllpackSegments = Containers::Segments::Ellpack< Device, Index, IndexAllocator >;
template< typename Real, typename Device, typename Index >
Tomáš Oberhuber
committed
using SparseMatrix_Ellpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, EllpackSegments >;
template< typename Device, typename Index, typename IndexAllocator >
using SlicedEllpackSegments = Containers::Segments::SlicedEllpack< Device, Index, IndexAllocator >;
template< typename Real, typename Device, typename Index >
Tomáš Oberhuber
committed
using SparseMatrix_SlicedEllpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, SlicedEllpackSegments >;
// Get the name (with extension) of input matrix file
std::string getMatrixFileName( const String& InputFileName )
{
std::string fileName = InputFileName;
const size_t last_slash_idx = fileName.find_last_of( "/\\" );
if( std::string::npos != last_slash_idx )
fileName.erase( 0, last_slash_idx + 1 );
return fileName;
}
Lukas Cejka
committed
// Get only the name of the format from getType()
Lukas Cejka
committed
template< typename Matrix >
std::string getMatrixFormat( const Matrix& matrix )
Lukas Cejka
committed
{
std::string mtrxFullType = getType( matrix );
std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) );
std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 );
return format;
}
template< typename Matrix >
std::string getFormatShort( const Matrix& matrix )
{
std::string mtrxFullType = getType( matrix );
std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) );
std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 );
format = format.substr( format.find(':') + 2);
format = format.substr( 0, 3 );
return format;
}
// Print information about the matrix.
template< typename Matrix >
void printMatrixInfo( const Matrix& matrix,
std::ostream& str )
str << "\n Format: " << getMatrixFormat( matrix ) << std::endl;
str << " Rows: " << matrix.getRows() << std::endl;
str << " Cols: " << matrix.getColumns() << std::endl;
str << " Nonzero Elements: " << matrix.getNumberOfNonzeroMatrixElements() << std::endl;
Lukas Cejka
committed
}
template< typename Real,
template< typename, typename, typename > class Matrix,
template< typename, typename, typename, typename > class Vector = Containers::Vector >
benchmarkSpMV( Benchmark& benchmark,
const String& inputFileName,
Lukas Cejka
committed
bool verboseMR )
Lukas Cejka
committed
{
// Setup CSR for cuSPARSE. It will compared to the format given as a template parameter to this function
typedef Matrices::CSR< Real, Devices::Host, int > CSR_HostMatrix;
typedef Matrices::CSR< Real, Devices::Cuda, int > CSR_DeviceMatrix;
CSR_HostMatrix CSRhostMatrix;
CSR_DeviceMatrix CSRdeviceMatrix;
MatrixReader< CSR_HostMatrix >::readMtxFile( inputFileName, CSRhostMatrix, verboseMR );
// cuSPARSE handle setup
cusparseHandle_t cusparseHandle;
cusparseCreate( &cusparseHandle );
// cuSPARSE (in TNL's CSR) only works for device, copy the matrix from host to device
CSRdeviceMatrix = CSRhostMatrix;
// Delete the CSRhostMatrix, so it doesn't take up unnecessary space
CSRhostMatrix.reset();
// Initialize the cusparseCSR matrix.
TNL::CusparseCSR< Real > cusparseCSR;
cusparseCSR.init( CSRdeviceMatrix, &cusparseHandle );
#endif
// Setup the format which is given as a template parameter to this function
Lukas Cejka
committed
typedef Matrix< Real, Devices::Host, int > HostMatrix;
typedef Matrix< Real, Devices::Cuda, int > DeviceMatrix;
typedef Containers::Vector< Real, Devices::Host, int > HostVector;
typedef Containers::Vector< Real, Devices::Cuda, int > CudaVector;
Lukas Cejka
committed
HostMatrix hostMatrix;
DeviceMatrix deviceMatrix;
HostVector hostVector, hostVector2;
CudaVector deviceVector, deviceVector2;
MatrixReader< HostMatrix >::readMtxFile( inputFileName, hostMatrix, verboseMR );
// Setup MetaData here (not in tnl-benchmark-spmv.h, as done in Benchmarks/BLAS),
// because we need the matrix loaded first to get the rows and columns
benchmark.setMetadataColumns( Benchmark::MetadataColumns({
{ "matrix name", convertToString( getMatrixFileName( inputFileName ) ) },
{ "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) },
{ "rows", convertToString( hostMatrix.getRows() ) },
Lukas Cejka
committed
{ "columns", convertToString( hostMatrix.getColumns() ) },
{ "matrix format", convertToString( getType( hostMatrix ) ) }
} ));
hostVector.setSize( hostMatrix.getColumns() );
hostVector2.setSize( hostMatrix.getRows() );
#ifdef HAVE_CUDA
deviceMatrix = hostMatrix;
deviceVector.setSize( hostMatrix.getColumns() );
deviceVector2.setSize( hostMatrix.getRows() );
#endif
// reset function
auto reset = [&]() {
hostVector.setValue( 1.0 );
hostVector2.setValue( 0.0 );
#ifdef HAVE_CUDA
deviceVector.setValue( 1.0 );
deviceVector2.setValue( 0.0 );
#endif
};
const int elements = hostMatrix.getNumberOfNonzeroMatrixElements();
const double datasetSize = (double) elements * ( 2 * sizeof( Real ) + sizeof( int ) ) / oneGB;
// compute functions
auto spmvHost = [&]() {
hostMatrix.vectorProduct( hostVector, hostVector2 );
};
auto spmvCuda = [&]() {
deviceMatrix.vectorProduct( deviceVector, deviceVector2 );
};
auto spmvCusparse = [&]() {
cusparseCSR.vectorProduct( deviceVector, deviceVector2 );
};
benchmark.setOperation( datasetSize );
benchmark.time< Devices::Host >( reset, "CPU", spmvHost );
// Initialize the host vector to be compared.
// (The values in hostVector2 will be reset when spmvCuda starts)
HostVector resultHostVector2;
resultHostVector2.setSize( hostVector2.getSize() );
resultHostVector2.setValue( 0.0 );
// Copy the values
resultHostVector2 = hostVector2;
#ifdef HAVE_CUDA
benchmark.time< Devices::Cuda >( reset, "GPU", spmvCuda );
// Initialize the device vector to be compared.
// (The values in deviceVector2 will be reset when spmvCusparse starts)
HostVector resultDeviceVector2;
resultDeviceVector2.setSize( deviceVector2.getSize() );
resultDeviceVector2.setValue( 0.0 );
// Setup cuSPARSE MetaData, since it has the same header as CSR,
// and therefore will not get its own headers (rows, cols, speedup etc.) in log.
// * Not setting this up causes (among other undiscovered errors) the speedup from CPU to GPU on the input format to be overwritten.
benchmark.setMetadataColumns( Benchmark::MetadataColumns({
{ "matrix name", convertToString( getMatrixFileName( inputFileName ) ) },
{ "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) },
{ "rows", convertToString( hostMatrix.getRows() ) },
{ "columns", convertToString( hostMatrix.getColumns() ) },
{ "matrix format", convertToString( "CSR-cuSPARSE-" + getFormatShort( hostMatrix ) ) }
benchmark.time< Devices::Cuda >( reset, "GPU", spmvCusparse );
HostVector resultcuSPARSEDeviceVector2;
resultcuSPARSEDeviceVector2.setSize( deviceVector2.getSize() );
resultcuSPARSEDeviceVector2.setValue( 0.0 );
resultcuSPARSEDeviceVector2 = deviceVector2;
// Difference between GPU (current format) and GPU-cuSPARSE results
//Real cuSparseDifferenceAbsMax = resultDeviceVector2.differenceAbsMax( resultcuSPARSEDeviceVector2 );
Real cuSparseDifferenceAbsMax = max( abs( resultDeviceVector2 - resultcuSPARSEDeviceVector2 ) );
//Real cuSparseDifferenceLpNorm = resultDeviceVector2.differenceLpNorm( resultcuSPARSEDeviceVector2, 1 );
Real cuSparseDifferenceLpNorm = lpNorm( resultDeviceVector2 - resultcuSPARSEDeviceVector2, 1 );
std::string GPUxGPUcuSparse_resultDifferenceAbsMax = "GPUxGPUcuSPARSE differenceAbsMax = " + std::to_string( cuSparseDifferenceAbsMax );
std::string GPUxGPUcuSparse_resultDifferenceLpNorm = "GPUxGPUcuSPARSE differenceLpNorm = " + std::to_string( cuSparseDifferenceLpNorm );
char *GPUcuSparse_absMax = &GPUxGPUcuSparse_resultDifferenceAbsMax[ 0u ];
char *GPUcuSparse_lpNorm = &GPUxGPUcuSparse_resultDifferenceLpNorm[ 0u ];
// Difference between CPU and GPU results for the current format
//Real differenceAbsMax = resultHostVector2.differenceAbsMax( resultDeviceVector2 );
Real differenceAbsMax = max( abs( resultHostVector2 - resultDeviceVector2 ) );
//Real differenceLpNorm = resultHostVector2.differenceLpNorm( resultDeviceVector2, 1 );
Real differenceLpNorm = lpNorm( resultHostVector2 - resultDeviceVector2, 1 );
std::string CPUxGPU_resultDifferenceAbsMax = "CPUxGPU differenceAbsMax = " + std::to_string( differenceAbsMax );
std::string CPUxGPU_resultDifferenceLpNorm = "CPUxGPU differenceLpNorm = " + std::to_string( differenceLpNorm );
char *CPUxGPU_absMax = &CPUxGPU_resultDifferenceAbsMax[ 0u ];
char *CPUxGPU_lpNorm = &CPUxGPU_resultDifferenceLpNorm[ 0u ];
// Print result differences of CPU and GPU of current format
std::cout << CPUxGPU_absMax << std::endl;
std::cout << CPUxGPU_lpNorm << std::endl;
// Print result differences of GPU of current format and GPU with cuSPARSE.
std::cout << GPUcuSparse_absMax << std::endl;
std::cout << GPUcuSparse_lpNorm << std::endl;
std::cout << std::endl;
Lukas Cejka
committed
}
template< typename Real = double,
typename Index = int >
Lukas Cejka
committed
const String& inputFileName,
bool verboseMR )
Lukas Cejka
committed
{
benchmarkSpMV< Real, Matrices::CSR >( benchmark, inputFileName, verboseMR );
benchmarkSpMV< Real, SparseMatrix_CSR >( benchmark, inputFileName, verboseMR );
benchmarkSpMV< Real, Matrices::Ellpack >( benchmark, inputFileName, verboseMR );
benchmarkSpMV< Real, SparseMatrix_Ellpack >( benchmark, inputFileName, verboseMR );
benchmarkSpMV< Real, SlicedEllpackAlias >( benchmark, inputFileName, verboseMR );
benchmarkSpMV< Real, SparseMatrix_SlicedEllpack >( benchmark, inputFileName, verboseMR );
//benchmarkSpMV< Real, Matrices::ChunkedEllpack >( benchmark, inputFileName, verboseMR );
////
// Segments based sparse matrices
//
// AdEllpack is broken
// benchmarkSpMV< Real, Matrices::AdEllpack >( benchmark, inputFileName, verboseMR );
//benchmarkSpMV< Real, Matrices::BiEllpack >( benchmark, inputFileName, verboseMR );
Lukas Cejka
committed
}
} // namespace Benchmarks
} // namespace TNL