Skip to content
Snippets Groups Projects
Matrix_impl.h 8.15 KiB
Newer Older
  • Learn to ignore specific revisions
  • /***************************************************************************
    
                              Matrix_impl.h  -  description
    
        begin                : Dec 18, 2013
        copyright            : (C) 2013 by Tomas Oberhuber
    
        email                : tomas.oberhuber@fjfi.cvut.cz
     ***************************************************************************/
    
    
    /* See Copyright Notice in tnl/Copyright */
    
    #pragma once
    
    #include <TNL/Matrices/Matrix.h>
    
    #include <TNL/Assert.h>
    
    namespace TNL {
    
    namespace Matrices {
    
    template< typename Real,
              typename Device,
              typename Index >
    
    Matrix< Real, Device, Index >::Matrix()
    
    : rows( 0 ),
      columns( 0 )
    {
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
     bool Matrix< Real, Device, Index >::setDimensions( const IndexType rows,
    
                                                           const IndexType columns )
    {
    
       TNL_ASSERT( rows > 0 && columns > 0,
    
                std::cerr << " rows = " << rows << " columns = " << columns );
    
       this->rows = rows;
       this->columns = columns;
       return true;
    }
    
    
    template< typename Real,
              typename Device,
              typename Index >
    
    void Matrix< Real, Device, Index >::getCompressedRowLengths( Containers::Vector< IndexType, DeviceType, IndexType >& rowLengths ) const
    
    {
       rowLengths.setSize( this->getRows() );
       for( IndexType row = 0; row < this->getRows(); row++ )
    
          rowLengths.setElement( row, this->getRowLength( row ) );
    
    template< typename Real,
              typename Device,
              typename Index >
       template< typename Real2,
                 typename Device2,
                 typename Index2 >
    
    bool Matrix< Real, Device, Index >::setLike( const Matrix< Real2, Device2, Index2 >& matrix )
    
    {
       return setDimensions( matrix.getRows(), matrix.getColumns() );
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
    Index Matrix< Real, Device, Index >::getRows() const
    
    {
       return this->rows;
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
    Index Matrix< Real, Device, Index >::getColumns() const
    
    {
       return this->columns;
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
    void Matrix< Real, Device, Index >::reset()
    
    {
       this->rows = 0;
       this->columns = 0;
    }
    
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    template< typename Real,
              typename Device,
              typename Index >
    
       template< typename MatrixT >
    bool Matrix< Real, Device, Index >::copyFrom( const MatrixT& matrix,
    
                                                  const CompressedRowLengthsVector& rowLengths )
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    {
    
       /*tnlStaticTNL_ASSERT( DeviceType::DeviceType == Devices::HostDevice, );
       tnlStaticTNL_ASSERT( DeviceType::DeviceType == Matrix:DeviceType::DeviceType, );*/
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    
       this->setLike( matrix );
    
       if( ! this->setCompressedRowLengths( rowLengths ) )
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
          return false;
    
       Containers::Vector< RealType, Devices::Host, IndexType > values;
       Containers::Vector< IndexType, Devices::Host, IndexType > columns;
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
       if( ! values.setSize( this->getColumns() ) ||
           ! columns.setSize( this->getColumns() ) )
          return false;
       for( IndexType row = 0; row < this->getRows(); row++ )
       {
    
          TNL_ASSERT( false, );
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
          // TODO: fix this
          //matrix.getRow( row, columns.getData(), values.getData() );
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
          this->setRow( row, columns.getData(), values.getData(), rowLengths.getElement( row ) );
       }
    
       return true;
    
    template< typename Real,
              typename Device,
              typename Index >
    
    Matrix< Real, Device, Index >& Matrix< Real, Device, Index >::operator = ( const Matrix< RealType, DeviceType, IndexType >& m )
    
    {
       this->setLike( m );
    
    
       Containers::Vector< IndexType, DeviceType, IndexType > rowLengths;
    
       m.getCompressedRowLengths( rowLengths );
       this->setCompressedRowLengths( rowLengths );
    
       Containers::Vector< RealType, DeviceType, IndexType > rowValues;
       Containers::Vector< IndexType, DeviceType, IndexType > rowColumns;
    
       const IndexType maxRowLength = rowLengths.max();
       rowValues.setSize( maxRowLength );
       rowColumns.setSize( maxRowLength );
       for( IndexType row = 0; row < this->getRows(); row++ )
       {
    
                    rowColumns.getData(),
                    rowValues.getData() );
    
          this->setRow( row,
                        rowColumns.getData(),
                        rowValues.getData(),
    
                        m.getRowLength( row ) );
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    template< typename Real,
              typename Device,
              typename Index >
    
       template< typename MatrixT >
    bool Matrix< Real, Device, Index >::operator == ( const MatrixT& matrix ) const
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    {
       if( this->getRows() != matrix.getRows() ||
           this->getColumns() != matrix.getColumns() )
          return false;
       for( IndexType row = 0; row < this->getRows(); row++ )
          for( IndexType column = 0; column < this->getColumns(); column++ )
             if( this->getElement( row, column ) != matrix.getElement( row, column ) )
                return false;
       return true;
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
       template< typename MatrixT >
    bool Matrix< Real, Device, Index >::operator != ( const MatrixT& matrix ) const
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    {
       return ! operator == ( matrix );
    }
    
    
    template< typename Real,
              typename Device,
              typename Index >
    
    bool Matrix< Real, Device, Index >::save( File& file ) const
    
       if( ! Object::save( file ) ||
    
           ! file.write( &this->rows ) ||
    
           ! file.write( &this->columns ) ||
    
           ! this->values.save( file ) )
    
          return false;
       return true;
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
    bool Matrix< Real, Device, Index >::load( File& file )
    
       if( ! Object::load( file ) ||
    
           ! file.read( &this->rows ) ||
    
           ! file.read( &this->columns ) ||
           ! this->values.load( file ) )
    
          return false;
       return true;
    }
    
    template< typename Real,
              typename Device,
              typename Index >
    
    void Matrix< Real, Device, Index >::print( std::ostream& str ) const
    
    #ifdef HAVE_CUDA
    template< typename Matrix,
    
              typename InVector,
              typename OutVector >
    
    __global__ void MatrixVectorProductCudaKernel( const Matrix* matrix,
    
                                                      const InVector* inVector,
                                                      OutVector* outVector,
    
       static_assert( std::is_same< typename Matrix::DeviceType, Devices::Cuda >::value, "" );
       const typename Matrix::IndexType rowIdx = ( gridIdx * Devices::Cuda::getMaxGridSize() + blockIdx.x ) * blockDim.x + threadIdx.x;
    
       if( rowIdx < matrix->getRows() )
          ( *outVector )[ rowIdx ] = matrix->rowVectorProduct( rowIdx, *inVector );
    }
    #endif
    
    template< typename Matrix,
    
              typename InVector,
              typename OutVector >
    
    void MatrixVectorProductCuda( const Matrix& matrix,
    
                                     const InVector& inVector,
                                     OutVector& outVector )
    
    #ifdef HAVE_CUDA
    
       typedef typename Matrix::IndexType IndexType;
    
       Matrix* kernel_this = Devices::Cuda::passToDevice( matrix );
       InVector* kernel_inVector = Devices::Cuda::passToDevice( inVector );
       OutVector* kernel_outVector = Devices::Cuda::passToDevice( outVector );
       dim3 cudaBlockSize( 256 ), cudaGridSize( Devices::Cuda::getMaxGridSize() );
    
       const IndexType cudaBlocks = roundUpDivision( matrix.getRows(), cudaBlockSize.x );
    
       const IndexType cudaGrids = roundUpDivision( cudaBlocks, Devices::Cuda::getMaxGridSize() );
    
       for( IndexType gridIdx = 0; gridIdx < cudaGrids; gridIdx++ )
       {
          if( gridIdx == cudaGrids - 1 )
    
             cudaGridSize.x = cudaBlocks % Devices::Cuda::getMaxGridSize();
    
          MatrixVectorProductCudaKernel<<< cudaGridSize, cudaBlockSize >>>
    
                                         ( kernel_this,
                                           kernel_inVector,
                                           kernel_outVector,
                                           gridIdx );
    
       Devices::Cuda::freeFromDevice( kernel_this );
       Devices::Cuda::freeFromDevice( kernel_inVector );
       Devices::Cuda::freeFromDevice( kernel_outVector );
    
    } // namespace Matrices
    
    } // namespace TNL