Skip to content
Snippets Groups Projects
Commit 986e25fc authored by Jakub Klinkovský's avatar Jakub Klinkovský
Browse files

ArrayOperations: using more parallel algorithms and suitable sequential fallbacks

- cudaMemcpy is slower than our ParallelFor kernel for CUDA
- use std::copy and std::equal instead of memcpy and memcmp, but only as
  sequential fallbacks
- use parallel algorithms for containsValue and containsOnlyValue (again
  with sequential fallbacks)
parent f8c8673d
No related branches found
No related tags found
1 merge request!42Refactoring for execution policies
......@@ -73,26 +73,13 @@ copy( DestinationElement* destination,
if( size == 0 ) return;
TNL_ASSERT_TRUE( destination, "Attempted to copy data to a nullptr." );
TNL_ASSERT_TRUE( source, "Attempted to copy data from a nullptr." );
if( std::is_same< DestinationElement, SourceElement >::value )
{
#ifdef HAVE_CUDA
cudaMemcpy( destination,
source,
size * sizeof( DestinationElement ),
cudaMemcpyDeviceToDevice );
TNL_CHECK_CUDA_DEVICE;
#else
throw Exceptions::CudaSupportMissing();
#endif
}
else
// our ParallelFor kernel is faster than cudaMemcpy
auto kernel = [destination, source] __cuda_callable__ ( Index i )
{
auto kernel = [destination, source] __cuda_callable__ ( Index i )
{
destination[ i ] = source[ i ];
};
ParallelFor< Devices::Cuda >::exec( (Index) 0, size, kernel );
}
destination[ i ] = source[ i ];
};
ParallelFor< Devices::Cuda >::exec( (Index) 0, size, kernel );
}
template< typename DestinationElement,
......
......@@ -12,7 +12,7 @@
#include <type_traits>
#include <stdexcept>
#include <string.h>
#include <algorithm> // std::copy, std::equal
#include <TNL/ParallelFor.h>
#include <TNL/Containers/Algorithms/ArrayOperations.h>
......@@ -67,29 +67,21 @@ copy( DestinationElement* destination,
const Index size )
{
if( size == 0 ) return;
if( std::is_same< DestinationElement, SourceElement >::value &&
( std::is_fundamental< DestinationElement >::value ||
std::is_pointer< DestinationElement >::value ) )
{
// GCC 8.1 complains that we bypass a non-trivial copy-constructor
// (in C++17 we could use constexpr if to avoid compiling this branch in that case)
#if defined(__GNUC__) && ( __GNUC__ > 8 || ( __GNUC__ == 8 && __GNUC_MINOR__ > 0 ) ) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
memcpy( destination, source, size * sizeof( DestinationElement ) );
#if defined(__GNUC__) && !defined(__clang__) && !defined(__NVCC__)
#pragma GCC diagnostic pop
#endif
}
else
{
TNL_ASSERT_TRUE( destination, "Attempted to copy data to a nullptr." );
TNL_ASSERT_TRUE( source, "Attempted to copy data from a nullptr." );
// our ParallelFor version is faster than std::copy iff we use more than 1 thread
if( Devices::Host::isOMPEnabled() && Devices::Host::getMaxThreadsCount() > 1 ) {
auto kernel = [destination, source]( Index i )
{
destination[ i ] = source[ i ];
};
ParallelFor< Devices::Host >::exec( (Index) 0, size, kernel );
}
else {
// std::copy usually uses std::memcpy for TriviallyCopyable types
std::copy( source, source + size, destination );
}
}
template< typename DestinationElement,
......@@ -102,11 +94,7 @@ copyFromIterator( DestinationElement* destination,
SourceIterator first,
SourceIterator last )
{
Index i = 0;
while( i < destinationSize && first != last )
destination[ i++ ] = *first++;
if( first != last )
throw std::length_error( "Source iterator is larger than the destination array." );
ArrayOperations< void >::copyFromIterator( destination, destinationSize, first, last );
}
......@@ -122,18 +110,15 @@ compare( const DestinationElement* destination,
if( size == 0 ) return true;
TNL_ASSERT_TRUE( destination, "Attempted to compare data through a nullptr." );
TNL_ASSERT_TRUE( source, "Attempted to compare data through a nullptr." );
if( std::is_same< DestinationElement, SourceElement >::value &&
( std::is_fundamental< DestinationElement >::value ||
std::is_pointer< DestinationElement >::value ) )
{
if( memcmp( destination, source, size * sizeof( DestinationElement ) ) != 0 )
return false;
if( Devices::Host::isOMPEnabled() && Devices::Host::getMaxThreadsCount() > 1 ) {
auto fetch = [destination, source] ( Index i ) -> bool { return destination[ i ] == source[ i ]; };
return Reduction< Devices::Host >::reduce( size, std::logical_and<>{}, fetch, true );
}
else {
// sequential algorithm can return as soon as it finds a mismatch
return std::equal( source, source + size, destination );
}
else
for( Index i = 0; i < size; i++ )
if( ! ( destination[ i ] == source[ i ] ) )
return false;
return true;
}
template< typename Element,
......@@ -148,10 +133,14 @@ containsValue( const Element* data,
TNL_ASSERT_TRUE( data, "Attempted to check data through a nullptr." );
TNL_ASSERT_GE( size, 0, "" );
for( Index i = 0; i < size; i++ )
if( data[ i ] == value )
return true;
return false;
if( Devices::Host::isOMPEnabled() && Devices::Host::getMaxThreadsCount() > 1 ) {
auto fetch = [=] ( Index i ) -> bool { return data[ i ] == value; };
return Reduction< Devices::Host >::reduce( size, std::logical_or<>{}, fetch, false );
}
else {
// sequential algorithm can return as soon as it finds a match
return ArrayOperations< void >::containsValue( data, size, value );
}
}
template< typename Element,
......@@ -166,10 +155,14 @@ containsOnlyValue( const Element* data,
TNL_ASSERT_TRUE( data, "Attempted to check data through a nullptr." );
TNL_ASSERT_GE( size, 0, "" );
for( Index i = 0; i < size; i++ )
if( ! ( data[ i ] == value ) )
return false;
return true;
if( Devices::Host::isOMPEnabled() && Devices::Host::getMaxThreadsCount() > 1 ) {
auto fetch = [data, value] ( Index i ) -> bool { return data[ i ] == value; };
return Reduction< Devices::Host >::reduce( size, std::logical_and<>{}, fetch, true );
}
else {
// sequential algorithm can return as soon as it finds a mismatch
return ArrayOperations< void >::containsOnlyValue( data, size, value );
}
}
} // namespace Algorithms
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment