Skip to content
Snippets Groups Projects
spmv.h 10.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • /***************************************************************************
                              spmv.h  -  description
                                 -------------------
    
    Lukas Cejka's avatar
    Lukas Cejka committed
        begin                : Dec 30, 2018
    
        copyright            : (C) 2015 by Tomas Oberhuber et al.
        email                : tomas.oberhuber@fjfi.cvut.cz
     ***************************************************************************/
    
    /* See Copyright Notice in tnl/Copyright */
    
    
    Lukas Cejka's avatar
    Lukas Cejka committed
    // Implemented by: Lukas Cejka
    
    //      Original implemented by J. Klinkovsky in Benchmarks/BLAS
    
    Lukas Cejka's avatar
    Lukas Cejka committed
    //      This is an edited copy of Benchmarks/BLAS/spmv.h by: Lukas Cejka
    
    #include "SpmvBenchmarkResult.h"
    
    #include <TNL/Matrices/Legacy/CSR.h>
    #include <TNL/Matrices/Legacy/Ellpack.h>
    #include <TNL/Matrices/Legacy/SlicedEllpack.h>
    #include <TNL/Matrices/Legacy/ChunkedEllpack.h>
    #include <TNL/Matrices/Legacy/AdEllpack.h>
    #include <TNL/Matrices/Legacy/BiEllpack.h>
    
    #include <TNL/Matrices/MatrixInfo.h>
    
    
    #include <TNL/Matrices/SparseMatrix.h>
    
    #include <TNL/Containers/Segments/CSR.h>
    #include <TNL/Containers/Segments/Ellpack.h>
    #include <TNL/Containers/Segments/SlicedEllpack.h>
    
    // Alias to match the number of template parameters with other formats
    
    template< typename Real, typename Device, typename Index >
    
    using SlicedEllpackAlias = Matrices::Legacy::SlicedEllpack< Real, Device, Index >;
    
    // Segments based sparse matrix aliases
    template< typename Real, typename Device, typename Index >
    
    using SparseMatrix_CSR = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, Containers::Segments::CSR >;
    
    template< typename Device, typename Index, typename IndexAllocator >
    using EllpackSegments = Containers::Segments::Ellpack< Device, Index, IndexAllocator >;
    
    
    template< typename Real, typename Device, typename Index >
    
    using SparseMatrix_Ellpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, EllpackSegments >;
    
    template< typename Device, typename Index, typename IndexAllocator >
    using SlicedEllpackSegments = Containers::Segments::SlicedEllpack< Device, Index, IndexAllocator >;
    
    
    template< typename Real, typename Device, typename Index >
    
    using SparseMatrix_SlicedEllpack = Matrices::SparseMatrix< Real, Device, Index, Matrices::GeneralMatrix, SlicedEllpackSegments >;
    
    // Get the name (with extension) of input matrix file
    std::string getMatrixFileName( const String& InputFileName )
    
        const size_t last_slash_idx = fileName.find_last_of( "/\\" );
        if( std::string::npos != last_slash_idx )
            fileName.erase( 0, last_slash_idx + 1 );
    
    // Get only the name of the format from getType()
    
    std::string getMatrixFormat( const Matrix& matrix )
    
        std::string mtrxFullType = getType( matrix );
    
        std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) );
    
        std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 );
    
    template< typename Matrix >
    std::string getFormatShort( const Matrix& matrix )
    {
        std::string mtrxFullType = getType( matrix );
        std::string mtrxType = mtrxFullType.substr( 0, mtrxFullType.find( "<" ) );
        std::string format = mtrxType.substr( mtrxType.find( ':' ) + 2 );
        format = format.substr( format.find(':') + 2);
        format = format.substr( 0, 3 );
    
        return format;
    }
    
    
    // Print information about the matrix.
    
    template< typename Matrix >
    void printMatrixInfo( const Matrix& matrix,
                          std::ostream& str )
    
        str << "\n Format: " << getMatrixFormat( matrix ) << std::endl;
    
        str << " Rows: " << matrix.getRows() << std::endl;
        str << " Cols: " << matrix.getColumns() << std::endl;
        str << " Nonzero Elements: " << matrix.getNumberOfNonzeroMatrixElements() << std::endl;
    
    }
    
    template< typename Real,
              template< typename, typename, typename > class Matrix,
    
              template< typename, typename, typename, typename > class Vector = Containers::Vector >
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    benchmarkSpMV( Benchmark& benchmark,
                   const String& inputFileName,
    
       // Setup CSR for cuSPARSE. It will compared to the format given as a template parameter to this function
       using CSR_HostMatrix = Matrices::Legacy::CSR< Real, Devices::Host, int >;
       using CSR_DeviceMatrix = Matrices::Legacy::CSR< Real, Devices::Cuda, int >;
    
       CSR_HostMatrix CSRhostMatrix;
       CSR_DeviceMatrix CSRdeviceMatrix;
    
       // Read the matrix for CSR, to set up cuSPARSE
       MatrixReader< CSR_HostMatrix >::readMtxFile( inputFileName, CSRhostMatrix, verboseMR );
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    #ifdef HAVE_CUDA
    
       // cuSPARSE handle setup
       cusparseHandle_t cusparseHandle;
       cusparseCreate( &cusparseHandle );
    
       // cuSPARSE (in TNL's CSR) only works for device, copy the matrix from host to device
       CSRdeviceMatrix = CSRhostMatrix;
    
       // Delete the CSRhostMatrix, so it doesn't take up unnecessary space
       CSRhostMatrix.reset();
    
       // Initialize the cusparseCSR matrix.
       TNL::CusparseCSR< Real > cusparseCSR;
       cusparseCSR.init( CSRdeviceMatrix, &cusparseHandle );
    
       // Setup the format which is given as a template parameter to this function
       typedef Matrix< Real, Devices::Host, int > HostMatrix;
       typedef Matrix< Real, Devices::Cuda, int > DeviceMatrix;
       typedef Containers::Vector< Real, Devices::Host, int > HostVector;
       typedef Containers::Vector< Real, Devices::Cuda, int > CudaVector;
    
       HostMatrix hostMatrix;
       DeviceMatrix deviceMatrix;
       HostVector hostVector, hostVector2;
       CudaVector deviceVector, deviceVector2, cusparseVector;
    
       // Load the format
       MatrixReader< HostMatrix >::readMtxFile( inputFileName, hostMatrix, verboseMR );
    
       // Setup MetaData here (not in tnl-benchmark-spmv.h, as done in Benchmarks/BLAS),
       //  because we need the matrix loaded first to get the rows and columns
       benchmark.setMetadataColumns( Benchmark::MetadataColumns({
             { "matrix name", convertToString( getMatrixFileName( inputFileName ) ) },
             { "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) },
             { "rows", convertToString( hostMatrix.getRows() ) },
             { "columns", convertToString( hostMatrix.getColumns() ) },
             { "matrix format", MatrixInfo< HostMatrix >::getFormat() } //convertToString( getType( hostMatrix ) ) }
          } ));
    
       hostVector.setSize( hostMatrix.getColumns() );
       hostVector2.setSize( hostMatrix.getRows() );
    
       deviceMatrix = hostMatrix;
       deviceVector.setSize( hostMatrix.getColumns() );
       deviceVector2.setSize( hostMatrix.getRows() );
       cusparseVector.setSize( hostMatrix.getRows() );
    
       // reset function
       auto resetHostVectors = [&]() {
          hostVector = 1.0;
          hostVector2 = 0.0;
       };
    #ifdef HAVE_CUDA
       auto resetCudaVectors = [&]() {
          deviceVector = 1.0;
          deviceVector2 = 0.0;
       };
       auto resetCusparseVectors = [&]() {
          deviceVector = 1.0;
          cusparseVector == 0.0;
       };
    
       const int elements = hostMatrix.getNumberOfNonzeroMatrixElements();
       const double datasetSize = (double) elements * ( 2 * sizeof( Real ) + sizeof( int ) ) / oneGB;
    
       auto spmvHost = [&]() {
          hostMatrix.vectorProduct( hostVector, hostVector2 );
       };
    
    #ifdef HAVE_CUDA
    
       auto spmvCuda = [&]() {
          deviceMatrix.vectorProduct( deviceVector, deviceVector2 );
       };
    
       auto spmvCusparse = [&]() {
           cusparseCSR.vectorProduct( deviceVector, cusparseVector );
       };
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    #endif
    
       benchmark.setOperation( datasetSize );
       benchmark.time< Devices::Host >( resetHostVectors, "CPU", spmvHost );
    
       // Initialize the host vector to be compared.
       //  (The values in hostVector2 will be reset when spmvCuda starts)
       HostVector resultHostVector2;
       resultHostVector2.setSize( hostVector2.getSize() );
       resultHostVector2.setValue( 0.0 );
    
       // Copy the values
       resultHostVector2 = hostVector2;
    
       benchmark.time< Devices::Cuda >( resetCudaVectors, "GPU", spmvCuda );
    
       // Initialize the device vector to be compared.
       //  (The values in deviceVector2 will be reset when spmvCusparse starts)
       HostVector resultDeviceVector2;
       resultDeviceVector2.setSize( deviceVector2.getSize() );
       resultDeviceVector2.setValue( 0.0 );
    
       resultDeviceVector2 = deviceVector2;
       
       // Setup cuSPARSE MetaData, since it has the same header as CSR,
       //  and therefore will not get its own headers (rows, cols, speedup etc.) in log.
       //      * Not setting this up causes (among other undiscovered errors) the speedup from CPU to GPU on the input format to be overwritten.
       benchmark.setMetadataColumns( Benchmark::MetadataColumns({
             { "matrix name", convertToString( getMatrixFileName( inputFileName ) ) },
             { "non-zeros", convertToString( hostMatrix.getNumberOfNonzeroMatrixElements() ) },
             { "rows", convertToString( hostMatrix.getRows() ) },
             { "columns", convertToString( hostMatrix.getColumns() ) },
             { "matrix format", convertToString( "CSR-cuSPARSE-" + getFormatShort( hostMatrix ) ) }
          } ));
    
       SpmvBenchmarkResult< Real, int > benchmarkResult( deviceVector2, hostVector2, cusparseVector );
       benchmark.time< Devices::Cuda >( resetCusparseVectors, "GPU", spmvCusparse, benchmarkResult );
    
    
    }
    
    template< typename Real = double,
              typename Index = int >
    
    Tomáš Oberhuber's avatar
    Tomáš Oberhuber committed
    benchmarkSpmvSynthetic( Benchmark& benchmark,
    
                            const String& inputFileName,
                            bool verboseMR )
    
       benchmarkSpMV< Real, Matrices::Legacy::CSR >( benchmark, inputFileName, verboseMR );
    
       benchmarkSpMV< Real, SparseMatrix_CSR >( benchmark, inputFileName, verboseMR );
       
    
       benchmarkSpMV< Real, Matrices::Legacy::Ellpack >( benchmark, inputFileName, verboseMR );
    
       benchmarkSpMV< Real, SparseMatrix_Ellpack >( benchmark, inputFileName, verboseMR );
       
       benchmarkSpMV< Real, SlicedEllpackAlias >( benchmark, inputFileName, verboseMR );
       benchmarkSpMV< Real, SparseMatrix_SlicedEllpack >( benchmark, inputFileName, verboseMR );
    
       benchmarkSpMV< Real, Matrices::Legacy::ChunkedEllpack >( benchmark, inputFileName, verboseMR );
       benchmarkSpMV< Real, Matrices::Legacy::BiEllpack >( benchmark, inputFileName, verboseMR );
    
    
       ////
       // Segments based sparse matrices
    
       // AdEllpack is broken
    
       // benchmarkSpMV< Real, Matrices::AdEllpack >( benchmark, inputFileName, verboseMR );
    
       //benchmarkSpMV< Real, Matrices::BiEllpack >( benchmark, inputFileName, verboseMR );